无线通信

赛灵思为为下列领域无线网络设备提供了经济的、高性能解决方案:RF 数字前段(DFE)信号处理、基带处理(包括前向纠错(FEC)、傅立叶变换和自适应调制)以及高级接口、连接功能和桥接解决方案。这里汇集赛灵思有关无线通信的所有产品、技术、方案信息,帮助工程师加速产品面市!

2018年3月22日,自适应和智能计算的全球领先企业赛灵思公司(Xilinx, Inc.,(NASDAQ:XLNX))宣布,英国布里斯托大学(University of Bristol)智能互联网实验室采用赛灵思芯片技术部署并演示全球首个端到端 5G 城市网络。这种灵活可编程的 5G 网络测试平台, 包括使用多种协议连接到 5G 虚拟基带池的 5G NR 无线电头端,具有的动态低时延聚合与弹性带宽分配利用端到端 SDN 控制环境进入光纤回程。此次 5G 网络测试平台上展示了​​“超互联(hyper-connected)”智能城市环境中的用例,如增强现实、自治交通与智能旅游等,该项目由英国政府数字文化传媒和体育部(DCMS)资助。

第五代无线接入网络有望于 2020 年以后可以满足新用例和应用的系统和服务要求。为了满足 2020 年信息社会的需求,5G最重要的工作就是产业互联与新服务支持。第四代,即 4G LTE,其焦点集中在使用者与场所的通信与信息分享,而5G 则将范围扩展到了机器,可为通信和信息共享的 4G 主题添加可靠与适应性强的控制和监控功能。这种转变对系统要求与设计理念具有积极深远的影响。5G 的愿景涵盖我们生活的方方面面,从我们如何制造、生产、运输、存储及消费商品,到过程中的能源与环境管理,再到我们如何生活、工作、通勤、娱乐与休闲等无所不包。

公司演示了FPGA业界首项计划在 7nm 产品应用的112G PAM4 收发器技术,并宣布 Virtex UltraScale+ 系列新增 58G PAM4 FPGA 产品

赛灵思公司(Xilinx, Inc.,(NASDAQ:XLNX)),今天宣布在 2018 年美国光纤通讯展览会及研讨会(OFC 2018)上展示了其在光纤网络上的技术领先优势。公司通过FPGA 行业突破性的 112G PAM4 光纤网络电气信号传输技术的首次演示,以及 16nm Virtex® UltraScale+™ 系列新增带有 58G PAM4 收发器器件系列的宣布,让与会者一睹了未来网络技术的风采。

云服务和5G 的推出驱动数据流量大幅增长,这为满足网络中迅速增长的带宽需求带来了挑战。要想以高性价比满足带宽需求,路由器和交换机的线路卡端口密度、光学标准的演进发展以及光学网络带宽升级都是面临的主要约束。向58G和112G收发器的过渡,是在相同的现有空间上实现400G和800G+数据速率的重要一步。

112G PAM4技术演示—赛灵思定义新一代产品性能

五大5G无线技术概述

作者:Brian Santo/EETimes-interactive总编辑

对于2018年的5G网络来说,最重要的五大无线技术中的两个—多重输入多重输出(MIMO)和波束成形(beamforming)——对5G网络一直都非常重要。

MIMO和波束成形
对于LTE/4G,业界正接近时间和频率利用的理论极限。5G无线技术的下一步是利用空间维度,透过向不同方向发射严格聚焦的讯号,尽可能频繁地同时使用任何给定频率。业界在将这两项技术用于5G时,尚需克服挑战。2017年,这两个主题一直在进步和变化,2018年在这两方面可能会看到更多。

MIMO描述了在发送端和接收端将越来越多的天线聚合进越来越密集的数组,以创建更多的数据串流层。同时,波束成形和与波束跟踪紧密相关的技术是将每个讯号引导到接收器的最佳路径上,同时避免讯号干扰。

波束成形将使MIMO效率更高。不过,要应用在5G网络系统,这两种技术都需要做进一步改进。

探讨构建5G的五项关键技术

作者:Kalyan Sundhar/Ixia Solutions Group(现隶属Keysight)行动、虚拟化暨应用产品副总裁

业界广泛认为,5G行动通讯网络直到2020或2021年才会提供,甚至即使到那时也不会是广泛提供。但是,随着行动数据流量持续增长(过去5年成长了18倍),因此可以预计5G将比以往更快地到来。

业界广泛认为,5G行动通讯网络直到2020或2021年才会提供,甚至即使到那时也不会是广泛提供。但是,随着行动数据流量持续增长(过去5年成长了18倍),因此可以预计5G将比以往更快地到来。思科(Cisco)预测,2021年,5G连接将比一般的4G连接产生多4.7倍的流量,图1显示了这种增长。

 图1 行动数据流量持续增长。 (数据源:思科)

作者:David Hall 美国国家仪器RF产品首席营销经理

很多人应该还记得第一次使用手机接收简讯或是下载网页的情形。现在,手机只要几秒就能下载高分辨率的影片,传输率比以前的第一台笔记本电脑更高。不过,无线网络往后的目标不只是让下载速度更快而已。

十年内,连网装置的数量会是连网用户的十倍以上。因此,未来的无线标准将持续演进,藉以满足全新案例的需求,网络不仅可以连接不同的人,还能连接对象。

除了运用全新的无线技术,这些功能还必须仰赖新款仪器并降低售价。未来的装置要能够以新的方法执行无线测试,因此以国家仪器(NI)为例,该公司不断改善PXI平台、迎接未来无线测试的挑战。

ITU擘划无线技术未来 三大使用案例出线
国际电信联盟(ITU)针对2020年国际行动通讯(IMT-2020)提出愿景,并依据多种使用案例,点出未来无线标准的需求。这项愿景提供5G技术需求的交流架构,并说明三种不同的使用案例(图1)。

IEEE最新白皮书《软件定义的5G生态系统》综述

作者:李远东

IEEE的SDN研究组(IEEE SDN Initiative)于2016年7月15日发布了其第二份白皮书“Towards 5G Software-Defined Ecosystems:Technical Challenges, Business Sustainability and Policy Issues(《软件定义的5G生态系统:技术挑战、商业模式可持续性、通信政策问题》)”,系统地阐述了其对于“电信网络软件化”这种电信网络技术经济变革的研究成果,具有很大参考价值。下文简要介绍该白皮书的内容。

目前,多个技术经济驱动力(techno-economic drivers)正在为将来电信网络设计、电信业务运营的范式变革创造条件、奠定基础。这些驱动力包括:信息技术(IT)的进步、超宽带(固定及无线网络)接入的“泛在”化、硬件设备价格的降低、虚拟化技术的成熟、开源软件得到了越来越广泛的实际应用、用户终端的能力越来越强大等。

局域互联网(LIN)总线简介

局域互联网(LIN)是一种低成本的嵌入式网络标准,用于连接智能设备。LIN最常见于汽车工业。

1. LIN概述
局域互联网(LIN)总线是为汽车网络开发的一种低成本、低端多路复用通信标准。虽然控制器局域网(CAN)总线满足了高带宽、高级错误处理网络的需求,但是实现CAN的软硬件花费使得低性能设备(如电动车窗和座椅控制器)无法采用该总线。若应用程序无需CAN的带宽及多用性,可采用LIN这种高性价比的通信方式。用户可在最先进的低价位8位微控制器中嵌入标准串行通用异步收发器(UART),以相对廉价的方式实现LIN。

现代汽车网络包含各类总线。例如,在主体电子设备的低成本应用程序中使用LIN,在主流动力系统和车身通信中使用CAN,而在先进系统(如主动悬挂)中的高速同步数据通信中使用新兴的FlexRay总线。

LIN总线采用主/从方法,包含一个LIN主方和一个或多个LIN从方。

图1. LIN消息帧

一种自适应的宽频信号源系统设计和实现

作者:徐飞,李天煜,吕婧,肖钟凯,张国平

摘要:主要介绍了一种宽频带、相位噪声低、杂散抑制度高的频率合成系统。该设计使用了频率合成芯片ADF4351和高速可编程芯片FPGA来完成自适应控制,不仅实现了输出频率范围35 MHz~4 .400 GHz、功率可调范围为-4 dBm~5 dBm的低相噪稳定的频率源,同时还实现了对全频带频率的转换时间和跳频范围的智能控制。

0 引言

  随着无线通信的不断发展,对频率源的频率稳定度、频谱纯度、频率范围以及输出频率点数的要求也越来越高 [1]。本设计与传统的频率合成系统相比,在实现输出频带范围大、低相噪、稳定的频率源的基础上,通过智能控制完成了一种自适应的宽频信号源的输出,可根据不同的频段来选择分辨率和频率转换时间以及输出功率的大小;同时简化了电路设计,降低了成本。

1 原理和方案设计

作者:李依频

5G钱景诱人,通讯设备商、量测仪器商以及FPGA厂商已纷纷推出5G无线原型、毫米波通道探测、5G波形产生与分析测试、5G功率放大器量测等解决方案,来促进第五代行动通讯系统开发。

5G网络容量飞跃成长、上网速度变快、拥有更低延迟性,且具备更密集的小基地台(Small Cell)及更可靠的联网质量,符合未来万物联网需求,因而有助加速物联网、车联网和机器对机器(M2M)等应用实现,再者,5G专利将带来可观的授权金,商机不容小觑,吸引电信设备商、量测仪器商和现场可编程门阵列(FPGA)芯片商投入研发。

为卡位第五代行动通讯市场,爱立信(Ericsson)、国家仪器(NI)、罗德史瓦兹(Rohde & Schwarz)、是德科技(Keysight Technologies)、安立知(Anritsu)和赛灵思(Xilinx)皆已紧锣密鼓布局5G。

助力电信商实场测试 爱立信祭出5G无线原型
5G标准虽尚未制定,但爱立信已推出5G无线原型(Radio Prototype),并预计2016年提供给部分营运商做测试使用,来催化5G发展。

第一部分 — ADI/Xilinx SDR 快速原型制作平台:功能、优势以及工具

作者:Di Pu、Andrei Cozma和Tom Hill

摘要
无线系统的概念与设计实现之间存在巨大的差异。要缩小这种差异通常都要涉及到几组来自各领域的工程师团队(比如RF、SW、DSP、HDL和嵌入式Linux®),并且很多情况下项目在开发的早期阶段便由于难以协调各设计团队而偏离了原先计划。

本系列文章分为四个部分,将讨论平台和工具的进步;这些技术进步允许开发人员快速进行无线系统的仿真与原型制作,同时建立与保持投入生产的可实现路径。作为实际过程的一个示例,我们将对无线SDR平台进行原型制作,该平台可接收并解码自动相关监视广播 (ADS-B) 信号,以便我们检测并汇报附近飞行中的商用飞机的位置、高度和速度。本例中需用到MATLAB®和Simulink,以及集成和内嵌硬件/软件的技能。硬件平台将采用ADI/Xilinx®软件定义无线电 (SDR) 原型制作系统。使用MATLAB和Simulink®后,将执行下列任务:

同步内容