UltraScale+

了解 Xilinx FPGA 如何通过深度学习图像分类示例来加速重要数据中心工作负载机器学习。该演示可通过 Alexnet 神经网络模型加速图像(从 ImageNet 获得)分类。它可通过开源框架 Caffe 实现,也可采用 Xilinx xDNN 库加速,从而可实现全面优化,为 8 位推理带来最高计算效率。

Amazon联手Xilinx搞了件大事,可重构计算将复兴

作者: 李一雷 半导体行业观察

在今年11月中旬举办的“2016年超算大会上”,FPGA大厂Xilinx发布了可重配置加速栈(ReconfigurableAcceleration Stack)。配合可重构的FPGA,这个架构能解决可重构计算中的编程困难问题,并加速可重构计算生态的建设。

日前,Amazon云服务AWS更是基于Xilinx高端Ultrascale+ FPGA推出了使用在云端的FPGA解决方案。众多巨头的参与,让诞生几十年的可重构计算再度成为业界关注的焦点。但是你真的懂得可重构计算吗?

可重构计算的起源

自从计算机诞生以来,科学家们就意识到计算机架构对于其处理能力有着至关重要的影响。事实上,从来不存在一种对所有运算任务都是最优解的计算机架构。这是因为计算机的运算单元由芯片构成,而在芯片的面积固定的情况下计算机架构就决定了如何分配芯片的资源。

举例来说,机器学习应用(尤其是CNN)会比较注重并行运算,因此最适合的架构是能处理并行运算的多核架构,而每个核的运算能力并不需要特别强。另一方面,在一些科学及工业运算上,计算是无法并行执行的,于是最适合的架构是单核架构并把这个核做到非常强。

同步内容