
XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 1

© 2009 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property
of their respective owners.

Abstract This application note discusses the usage of a Local Link DMA peripheral with the Linux
operating system. A reference system with a Local Link DMA Loopback peripheral is included,
as well as an example driver.

The integration of the provided driver into the Linux kernel is discussed, as well as relevant
design and operational information.

Included
Systems

Included with this application note is one reference system built for the Xilinx ML507 Rev A
board. The reference system is available in the following ZIP file available at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=115119

Introduction This application note provides the steps and methodology needed to utilize a custom LocalLink
Scatter-Gather DMA (SGDMA) core with Linux.

An example Local Link loopback core is provided with a Linux driver. The driver design and
operation are discussed at length.

Hardware
Requirements

The hardware requirements for this reference system are:

• Xilinx ML507 Rev A board

• Xilinx Platform USB or Parallel IV programming cable

• RS232 serial cable and serial communication utility (HyperTerminal)

• Xilinx Platform Studio 11.1

• Xilinx Integrated Software Environment (ISE®) 11.1

• MontaVista Linux 5.0 (Linux kernel 2.6.24)

Reference
System
Specifics

This system uses the PowerPC® 440 processor block with a processor frequency of 400 MHz
and the Memory Interface Block (MIB) frequency of 266 MHz. The processor block crossbar is
set to 266 MHz. In addition, the MPLB and the first HDMA port of the crossbar are set to 133
MHz.

The reference system includes PPC440MC DDR2, XPS LL EXAMPLE, XPS BRAM, XPS
UART16550, XPS GPIO, and XPS INTC.

The PPC440MC DDR2 is connected to the MIB of the processor block with a frequency of 266
MHz.

The XPS BRAM, XPS GPIO, and XPS UART16550 cores are connected as slaves to the PLB
v4.6 instance that is connected to the MPLB.

The XPS LL EXAMPLE core which contains a LocalLink interface is connected to the first
HDMA port. The core’s PLB v4.6 slave interface of the core is connected to MPLB.

Application Note: Embedded Processing

XAPP1129 (v1.0) May 5, 2009

Integrating an EDK Custom Peripheral with a
LocalLink Interface into Linux
Author: Brian Hill

R

https://secure.xilinx.com/webreg/clickthrough.do?cid=115119
http://www.xilinx.com

Generate the Linux BSP

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 2

R

See Figure 1 for the block diagram and Table 1 for the address map of the system.

Block Diagram

Address Map

Overview of XPS LL EXAMPLE core

The XPS LL EXAMPLE core implements Local Link loopback. All data received are mirrored
back to the sender. This application note will show data in memory DMAed to the loopback
core, which redirects it back to the HDMA engine. The HDMA engine then DMAs this received
data to a different memory location.

The reference system included with this application note and the XPS LL EXAMPLE core are
discussed in XAPP1126 “Designing an EDK Custom Peripheral with a LocalLink Interface”.

Generate the
Linux BSP

The user will generate a Linux BSP within the Xilinx EDK, and then perform necessary
modifications to build the LL Example driver in this kernel.

Export the system to SDK

Generation of Board Support Packages in XPS is deprecated in EDK 11.1. The system is
exported to SDK, where the Linux BSP is generated.

1. In the XPS project, choose Project->Export Hardware Design to SDK.

X-Ref Target - Figure 1

Figure 1: Reference System Block Diagram

Table 1: Reference System Address Map

Peripheral Instance Base Address High Address

ppc440mc_ddr2 ppc440_mc_ddr2_0 0x00000000 0x0FFFFFFF

xps_uart16550 xps_uart16550_0 0x40400000 0x4040FFFF

xps_gpio LEDs_8Bit 0x40000000 0x4000FFFF

xps_bram_if_cntlr xps_bram_if_cntlr_1 0xFFFF0000 0xFFFFFFFF

xps_intc xps_intc_0 0x41200000 0x4120FFFF

xps_ll_example xps_ll_example_0 0x60000000 0x6000FFFF

XPS LL
Example

PowerPC
440

Processor

Processor Block

XPS
BRAM

XPS
INTC

XPS
GPIO

plb_v46_0

LLINK0

PPC440_MC

PPC440
DDR2

XPS
UART
16550

X1126_01_121008

Memory IF

PLB Mstr

DMA
DMA

PLB Slv0

PLB Slv1
DMA
DMA

®

http://www.xilinx.com/support/documentation/application_notes/xapp1126.pdf
http://www.xilinx.com

Generate the Linux BSP

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 3

R

2. Click Export & Launch SDK.

Note: This operation will take some time while XPS generates the bitstream.

3. Once SDK has launched, choose File->New->Project

X-Ref Target - Figure 2

Figure 2: Export Hardware Design to SDK

X-Ref Target - Figure 3

Figure 3: Export and Launch SDK

X-Ref Target - Figure 4

Figure 4: New SDK Project

X1029_02_032209

X1129_03_032209

X1129_04_032209

http://www.xilinx.com

Generate the Linux BSP

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 4

R

4. In the Wizard window, select Board Support Package.

5. In the Project name field select a new project name. In the Board Support Package Type
field select linux_2_6.

6. Fill in the pertinent Board Support Package settings

X-Ref Target - Figure 5

Figure 5: New Board Support Package

X-Ref Target - Figure 6

Figure 6: linux_2_6

X1129_05_032209

X1129_06_032209

http://www.xilinx.com

Generate the Linux BSP

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 5

R

a. Set the Linux Distribution to “MontaVista 5.0”

b. Set Memory Size to 0x10000000

c. Target directory is set to the location of the users Linux kernel

d. Set Rootfs type to ramdisk

e. Click OK. The BSP is generated.

7. Edit the generated <target directory>/arch/powerpc/boot/dts/ml507.dts to
reflect the modifications shown in red:

xps_ll_example_0: xps-ll-example@60000000 {
 compatible = "xlnx,xps-ll-example-1.00.a";
 reg = < 0x60000000 0x10000 >;
 llink-connected = <&DMA0>;
 xlnx,family = "virtex5";
 xlnx,include-dphase-timer = <0x0>;
 } ;

xps_intc_0: interrupt-controller@41200000 {
 #interrupt-cells = <0x2>;
 compatible = "xlnx,xps-intc-2.00.a", "xlnx,xps-intc-1.00.a";
 interrupt-controller ;
 reg = < 0x41200000 0x10000 >;
 xlnx,num-intr-inputs = <0x3>;
 } ;

Note: step 7 will not be required in a future release of EDK. The text added in this step is specific to the
system included with this application note and may require adjustment for any other EDK system.

This MontaVista 5.0 BSP which is generated primarily consists of a single text file which
describes the hardware system. It is placed under the configured target directory at
arch/powerpc/boot/dts/ml507.dts. The file used to generate the provided executables
is available in the ready_for_download area of the EDK project. The user may choose to
copy this file to their kernel rather then generate a BSP with SDK.

X-Ref Target - Figure 7

Figure 7: Board Support Package Settings

X1129_07_032209

http://www.xilinx.com

Generate the Linux BSP

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 6

R

Copy the driver

The provided driver is copied from the EDK project to the appropriate location in the kernel tree.
From an EDK shell issue the following commands:

$ cd <linux tree>
$ mkdir drivers/char/xilinx_ll_example
$ cp -a <EDK project>/drivers/xps_ll_example_v1_00_a/src/*
drivers/char/xilinx_ll_example

Add the driver to the kernel configuration
1. Edit <linux tree>/drivers/char/Kconfig, adding the driver to those configurable to the kernel

as shown:

config XILINX_LL_EXAMPLE
 bool "Xilinx Local Link example"
 depends on XILINX_DRIVERS
 select XILINX_EDK
 select NEED_XILINX_LLDMA
 select NEED_XILINX_PPC_DCR
 help
 Example driver for Xilinx Local Link Loopback core.

2. Edit <linux tree>/drivers/char/Makefile, adding the driver directory to the
kernel character driver build:

obj-$(CONFIG_XILINX_LL_EXAMPLE) += xilinx_ll_example/

3. Edit the kernel configuration to enable the Local Link example driver with the commands
shown:

$ cd <linux tree>
$ make ARCH=powerpc menuconfig

4. Choose Device Drivers→Character devices→Xilinx Local Link example

5. Copy the provided ramdisk image to the kernel by using the command:

$ cp <EDK project>/ready_for_download/ramdisk.image.gz <linux
tree>/arch/powerpc/boot/

6. Build the bootable kernel image

X-Ref Target - Figure 8

Figure 8: Enable Local Link Example Driver in Kernel Build

X1129_08_032209

http://www.xilinx.com

Executing the Reference System

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 7

R

$ cd <linux tree>
$ make ARCH=powerpc zImage.initrd

Executing the
Reference
System

Using HyperTerminal or a similar serial communications utility, map the operation of the utility to
the physical COM port to be used. Then connect the UART of the board to this COM port. Set
the HyperTerminal to the Bits per second to 9600, Data Bits to 8, Parity to None, and Flow
Control to None. The settings are shown in Figure 9. This is necessary to see the results from
the software application.

Executing the Reference System using the Pre-Built Bitstream and the
Compiled Software Application

To execute the system using files in the ready_for_download/ directory in the project root
directory, follow these steps:

1. Change directories to the ready_for_download directory.

2. Use iMPACT to download the bitstream by using the following command:

impact -batch xapp1129.cmd

3. Invoke XMD and connect to the PowerPC 440 processor by using the following command:

xmd -opt xapp1129.opt

4. Download the executable by using the following command depending on the software
application:

♦ dow zImage.initrd

5. Enter in the run command to run the software application.

6. Login as ‘root’. There is no password.

X-Ref Target - Figure 9

Figure 9: HyperTerminal Settings

X1129_09_032209

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 8

R

Executing the Reference System from XPS for Hardware

To execute the system for hardware using XPS, follow these steps:

1. Open system.xmp in XPS.

2. Select Hardware→Generate Bitstream to generate a bitstream for the system.

3. Select Device Configuration→Download Bitstream to download the bitstream.

4. Select Debug→Launch XMD to invoke XMD.

5. Download the executable file by using the following command depending on the software
application:

♦ dow zImage.initrd

6. Enter in the run command to run the software application.

Testing the Local Link Example driver

All data DMAd to the Local Link loopback core is mirrored back across the LocalLink, resulting
in the received data being DMAd to another memory location. Operation will ultimately
resemble a memory-to-memory DMA as perceived by software. The Local Link Example driver
presents this to the user as a loopback device. Data written to the device can be read back at
a later time (after the DMA is completed).

EXAMPLE USAGE:

cat /etc/issue > /dev/llex0
cat /dev/llex0
MontaVista(R) Linux(R) Professional Edition 5.0.24 (0502020)

XLL Example
Driver

The Local Link example driver is provided in the <EDK
project>/drivers/xps_ll_example_v1_00_a/src directory. There are three files:

Makefile
xll_example.c
xll_example.h

The LL Example driver utilizes the Xilinx lldma driver to assist with DMA activities. The lldma
driver creates and manipulates descriptor rings. It can not exist as a standalone driver, but
rather must be used by another driver (the driver of the core connected to the Local Link
interface) which provides all of the front end hooks into the Linux kernel. Users of the lldma
driver are still responsible for DMA interrupts and DMA related memory management. In many
respects the lldma driver is the functional equivalent of a library. A description of the lldma
driver API may can be found in <Linux tree>/drivers/xilinx_common/xlldma.h.

The LL Example driver utilizes the following Linux kernel functions:

dma_unmap_single Destroy single use DMA memory mapping

dma_map_sungle Create single use DMA memory mapping

virt_to_phys Provide the physical (bus) address for the virtual address

mutex_lock Lock the indicated mutex

mutex_unlock Unlock indicated mutex

printk Emit text out the console. Kernel equivalent of printf.

tasklet_disable Prevent the tasklet from being scheduled

tasklet_enable Re-enable scheduling of indicated tasklet

tasklet_schedule One-time schedule the indicated tasklet

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 9

R

Linux Device Tree

The linux kernel provides two separate architectures which support the PowerPC processor.
The original, ARCH=ppc, is still present in the kernel tree but has been deprecated. All current
development occurs on the ARCH=powerpc architecture. Both are present in the arch
directory of the kernel tree. The example driver provided with this application note is designed
to function with the ARCH=powerpc architecture and will not function with ARCH=ppc without
modification.

One of the primary differences between the two architectures is that ARCH=powerpc uses a
device tree to describe the hardware system. The older ARCH=ppc has platform hardware
settings bound at kernel compile time, using mechanisms such as the Xilinx xparameters.h
file. When building a kernel with ARCH=powerpc, xparameters.h can no longer be used;
hardware configuration must be retrieved from the device tree by the driver at runtime.

The MontaVista 5.0 BSP that is generated in the “Generate the Linux BSP” section is nothing
more than a text file. It is a device tree which is lumped together with the kernel for bootable
ramdisk images.

Refer to <linux tree>/Documentation/powerpc/booting-without-of.txt.

Driver initialization

The entry point of the driver is defined with the macro module_init(). It is seen that the
function xll_example_init() is responsible for hooking the driver into the kernel:

module_init(xll_example_init);

The xll_example_init() will register the driver as an Open Firmware platform device
driver. Open Firmware is generally associated with drivers which will utilize a device tree. In this
instance, there is no ROM monitor providing the device tree to the kernel; the device tree is
compiled into the bootable ramdisk image. The source of the device tree is of no consequence
to the driver.

list_entry Convert list pointer to user structure pointer.

list_empty Is the indicated list empty?

list_add_tail Add provided item to list tail

copy_to_user Copy kernel memory to user space

copy_from_user Copy user application memory to kernel

kmalloc
Allocate contiguous block of memory. Kernel equivalent of
malloc.

create_proc_entry Create a file in the /proc filesystem.

register_chrdev_region Assign a device number to a driver

ioremap
Memory map a peripheral into the kernel’s virtual address
space

request_irq Assign an IRQ handler

cdev_add Add character device file operation handlers

of_register_platform_dri
ver

Register probe function and hardware compatable with this
driver

of_address_to_resource Obtain hardware address of peripheral from device tree

of_irq_to_resource Obtain virtual IRQ of peripheral in the device tree

of_get_cpu_node Find the processor node in the device tree

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 10

R

The driver registers itself as compatable with “xps-ll-example-1.00.a”. Any instance of this in
the device tree will cause the drivers probe function to be called. The probe function will
ultimately lead to a driver setup function which will map this driver to a unique major device
number, provide file system hooks so that the driver services can be accessed from an
application in user space, memory map the LL EXAMPLE registers into kernel virtual address
space, and perform any necessary memory allocations.

Major Device Number

All Linux drivers have a unique major device number. Drivers also have a minor device number
which is locally significant to that driver only. The driver may use the minor device number to
differentiate between multiple instances of the same device, or for any other purpose the driver
author chooses.

A PC running Linux will often utilize drivers which obtain a major device number dynamically.
There are a limited number of device numbers available, and for a PC with potentially a large
number of devices present and generally available as kernel modules this is a sensible mode of
operation. An embedded device is typically of a fixed configuration, and a statically assigned
number is a more appropriate (and simpler) choice. Some well-established assignments may
be found in <linux tree>/include/linux/major.h.

The LL Example driver uses a static major device number of 253. This mapping is performed
with register_chrdev_region(), which also assigns the name “ll_example” to the device:

err = register_chrdev_region(devno, 1, "ll_example");

The device is now visible in /proc/devices

cat /proc/devices
Character devices:
 1 mem
 4 /dev/vc/0
 4 tty
 4 ttyS
259 icap
 5 /dev/tty
 5 /dev/console
 5 /dev/ptmx
 7 vcs
 10 misc
 13 input
 29 fb
 89 i2c
 90 mtd
128 ptm
136 pts
204 ttyUL
253 ll_example

Block devices:
 1 ramdisk
 7 loop
 31 mtdblock
254 xsysace
#

User space accesses a particular driver by device number with the use of special files. The
driver author will add a special file for the new device with the mknod command, typically
placing the special file in the /dev filesystem:

mknod /dev/llex0 c 253 0

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 11

R

This command creates the special file /dev/llex0, which is specified as a character device
with major number 253, minor number 0. This file is already present in the ramdisk provided
with this application note.

File operations for the driver are registered with the kernel with the cdev_add() function.
These vectors are called whenever an application performs file operations (open, close,
read, write, seek, ioctl) on the drivers special file.

Register Access

It is expected that a driver will need to access peripheral registers. To provide access to these
memory mapped registers the ioremap() function is used. Ioremap will provide a kernel
virtual address mapping for the physical (bus) address it is given.

ll_ex_dev->mapaddr = ioremap(ll_ex_dev->physaddr, ll_ex_dev->addrsize);

After this call, the LL Example core registers may be accessed with the virtual address
mapaddr.

Note: The example driver uses the kernel function in_be32() to perform register reads.

Interrupt Handlers

Interrupt vectors are registered using the request_irq() procedure. The LL Example driver
registers handlers for DMA TX and DMA RX interrupts:

err = request_irq(ll_ex_dev->dma_tx_irq,
 &xllex_dma_tx_interrupt, 0, "xilinx_dma_tx_int", ll_ex_dev);
err = request_irq(ll_ex_dev->dma_rx_irq,
 &xllex_dma_rx_interrupt, 0, "xilinx_dma_rx_int", ll_ex_dev);

Interrupt handlers are eligible for execution immediately after request_irq() has been
called; the driver writer must be certain that the driver is sufficiently initialized before registering
these handlers.

The interrupt sources and their statistics counts are now visible in /proc/interrupts

cat /proc/interrupts
 CPU0
 16: 2 Xilinx INTC Edge xilinx_dma_rx_int
 17: 2 Xilinx INTC Edge xilinx_dma_tx_int
 18: 1424 Xilinx INTC Edge serial
BAD: 0
#

The Bottom Half

Hardware interrupts handlers execute with processor interrupts disabled. Interrupt handlers
must perform their work very quickly for the system to equitably share processor resources and
maintain real-time performance. This is accomplished by dividing the interrupt handler into two
halves - the hardware interrupt handler, and the Bottom Half. The LL Example driver hardware
interrupt handlers will acquiesce the DMA peripheral, and schedule a tasklet to service the
DMA ring. Tasklets are run with interrupts enabled, so that scheduling still occurs and hardware
interrupts from other devices are still serviced.

DMA Memory Management

The lldma driver provides all the functions needed to manage descriptor rings. The task of
memory management is still left to the primary device driver. A Linux driver which performs
DMA has several memory management considerations.

DMA requires blocks of contiguous physical memory. Kernel memory allocation functions such
as kmalloc() and get_free_pages() are suitable for this purpose. Note that vmalloc()
can not be used for this purpose. Vmalloc allocations are contiguous in virutal address space

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 12

R

because the TLB has mapped discontiguous physical blocks together into a contiguous virtual
block.

DMA operates with bus (physical) addresses. All addresses provided by kernel memory
allocators provide a kernel virtual address. The driver must map these virtual addresses to the
physical address needed by hardware. The LL Example driver uses the virt_to_phys()
function to obtain the physical address of buffer descriptors which the driver allocated with
kmalloc().

The DMA buffers are allocated by the LL Example driver with kmalloc(). These allocations
are in cached memory. In addition to the virtual to physical address mapping required to
perform DMA, the driver must manage the processor cache for these buffers. These tasks are
performed by the LL Example driver with the dma_map_single() and
dma_unmap_single() kernel functions.

This buffer was written by software (a transmit buffer, as indicated by DMA_TO_DEVICE).
dma_map_single() will flush this buffer from the data cache and return the physical address
needed by hardware.

phy_addr = (u32) dma_map_single(NULL, buff, buff_len, DMA_TO_DEVICE);

This buffer is waiting to be written by the DMA core (a receive buffer, as indicated by
DMA_FROM_DEVICE). dma_map_single() will invalidate the data cache entries pertaining
to this buffer and return the physical address needed by hardware.

new_buff_physaddr = (u32) dma_map_single(NULL, rx_buff->data,
 LL_EX_BUF_SIZE,
 DMA_FROM_DEVICE);

For any call to dma_map_single() there must be a corresponding call to
dma_unmap_single() after DMA completion (excerpts shown). Software must not access
the buffer in any way after dma_map_single() until dma_unmap_single() has been
performed.

dma_unmap_single(NULL, buff_phys_addr,
 LL_EX_BUF_SIZE,
 DMA_FROM_DEVICE);
dma_unmap_single(NULL, dma_phys_addr, len,
 DMA_TO_DEVICE);

File Operations

User applications interact with the LL Example driver by performing operations on the file
system. Open, close, read, and write system calls on the drivers special file /dev/llex0
result in the functions which the driver has registered being executed in kernel space.

int ll_ex_open(struct inode *inode, struct file *filp)

This function handles a user open() of the device file. A maximum of one reader and one
writer is enforced here.

static int ll_ex_release(struct inode *inode, struct file *filp)

This function handles a user close() of the device file.

ssize_t ll_ex_write(struct file *filp, const char __user *buf,
 size_t count, loff_t *f_pos)

This function handles a user write() to the device file. The user data is copied into buffers
and added to the DMA TX ring. The Local Link example core will loop these data back, so it is
expected that the data will soon be found on the DMA RX ring.

ssize_t ll_ex_read(struct file *filp, char __user *buf, size_t count,
 loff_t *f_pos)

http://www.xilinx.com

XLL Example Driver

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 13

R

DMA receive operations place received buffers on the drivers rx_buffer_list. The
ll_ex_read() function handles a user read() on the device by copying the buffer at the
head of the receive list to user space. The buffer is then removed from the list and freed. Refer
to “DMA receive operation”.

DMA receive operation

The lldma driver manages DMA descriptor manipulations performed by software. The user’s
driver is responsible for certain descriptor fields to varying degrees. The descriptors
themselves, 0x40 bytes each, are allocated by the main driver. The physical buffer address,
provided to hardware in descriptor word 1, is allocated by the main driver. For a receive
operation, the buffer length field (descriptor word 2) is provided by the driver to indicate the
maximum contiguous space available at the buffer address. The Local Link user core must
provide the valid byte count, as this is not provided by the DMA engine. The Local Link
Example core included with this application note provides the valid byte count in descriptor
word 7 “APP4”. The APP fields are available for any data the core wished to provide to its driver
using the Local Link footer words.

Several words are available in the descriptor for software use (hardware does not use or modify
these fields). The LL Example driver uses word 8 as an ID field. For receive operations, this
field contains the virtual address of an llex_rx_buff structure corresponding to this DMA
buffer.

This structure is the mechanism used to maintain the drivers rx_buffer_list - received
buffers awaiting consumption by a user read() on /dev/llex0. See Figure 10.

DRIVER EXAMPLE USAGE (REVISITED):
cat /etc/issue > /dev/llex0

The standard Linux ‘cat’ command writes the text file /etc/issue to the device special file.
The driver code copies this data from user memory to kernel memory. The kernel buffers are
then added to the DMA TX ring, which will DMA this data from memory to the Loopback core.
The loopback core forwards this data back across the Local Link to the DMA engine, which will
DMA the data from the loopback core to a receive buffer. The DMA RX interrupt handler will
place this used buffer in the receive buffer list for later usage.

cat /dev/llex0
MontaVista(R) Linux(R) Professional Edition 5.0.24 (0802884)

X-Ref Target - Figure 10

Figure 10: DMA Receive Descriptor Usage
X1129_10_032209

0 NEXT Physical address of next descriptor

1 Physical address of buffer associated with this descriptorBUFFER ADDR

2 Bytes to transmit (TX); total space available (RX)BUFFER LEN

3 Status/ControlSTS/CTRL/APP0

4 Data from peripheralAPP1

5 Data from peripheralAPP2

6

Struct llex_rx_buff

APP3

7 Data from peripheral; the LL Example
Loopback core will provide receive byte count here (RX)APP4/LEN

8 Software use only; the LL Example driver stores
 the kernel (virtual) address of associated llex_rx_buff here.SOFTWARE0 / ID

15 Software use only.SOFTWARE7

(list pointer to chain
these structures)

list

(valid bytes in buffer)data_lan
(actual buffer data)data

The receive interrupt handler add newly
reveived buffers to the tail of the driver’s
rx_buffer_list for later processing.

list
data_len
data

struct llex_rx_buff
list
data_len
data

struct llex_rx_buff
list
data_len
data

struct llex_rx_buff
rx_buffer_list

http://www.xilinx.com

Exercises for the User

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 14

R

The ‘cat’ command is used to read the device special file. Data from the head of the receive
buffer list rx_buffer_list is copied to user space. The buffer is then removed from
rx_buffer_list and freed.

/proc File System

The LL Example driver creates an entry in the /proc file system at initialization:

proc_entry = create_proc_entry("driver/ll_example_drvr", 0, NULL);

This entry is used to provide driver status and statistics to the user:

cat /proc/driver/ll_example_drvr

MAPADDR: 0xd1060000
Reads: 13
Writes: 5
Opens: 9
Closes: 9
TX IRQ: 4
TX Buff: 5
TX Bytes: 1798
RX IRQ: 4
RX Buff: 5
RX Bytes: 1798
Errors: 0

REGISTERS:
CTL: 0x00000000
STS: 0x00000001
TXFRM: 5
RXFRM: 5
TXBYTE: 1798
RXBYTE: 1798

Buffer Descriptors: 0x01148800 (Virtual 0xc1148800)

Exercises for
the User

The example driver provided with this application note is operational as described in the “XLL
Example Driver” section. This driver a simple example, made so to facilitate ease of
understanding. Various operations and driver services which are not provided are presented
here as an exercise for the user. These modifications may be desired in any driver written by
the user for a custom core, depending upon the requirements of the project. It is expected that
the user will require additional reference material to implement these modifications.

A Word on Driver Types

The example driver discussed is a character device. This is the simplest of all Linux kernel
drivers. Character device drivers are best suited to streaming interfaces, and as such, Local
Link DMA devices are a good fit. Linux also provides the concept of a block device. These are
typically mass storage devices. Lastly, Linux provides the infrastructure for Network devices,
such as the Xilinx XPS Local Link Tri-Mode Ethernet MAC. The appropriate choice depends on
the User’s application and system design.

Blocking Writes

User writes to the device file result in the driver adding a buffer descriptor with the written data
to the LLDMA TX ring. In the vast majority of instances, this will always succeed. It is possible
that in a high load situation that the TX ring will be full at this instant. The finite maximum
number of descriptors awaiting transmission may all be in use. In that instance, the software
must try again at a later time. The applicable driver function ll_ex_write() will return -

http://www.xilinx.com

References

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 15

R

ERESTARTSYS in the present form, which may cause the user space application to receive an
EINTR error for the write request. Consult the man page for sigaction(2) SA_RESTART for
details.

If the driver were to provide blocking IO, the driver would operate in a more resource friendly
way. When the TX ring is full, the driver would put the writing thread to sleep. The TX interrupt
handler DmaSendHandlerBH() would then wake the sleeping process after DMA TX
completion (a time when there is guaranteed to be at least one free TX Ring entry available).

Blocking Reads

A read of the device file from user space will result in the application reading the buffer at the
head of the rx_buffer_list. If there are no buffers present, userspace will see an end-of-
file. If no receive buffers are available, it may be desirable for the user application to wait until
data has been received. This waiting is accomplished with a blocking read -- if there are no
buffers in the rx_buffer_list, the reading process is put to sleep. Later, when received
buffers are added to the list in DmaRecvHandlerBH() this sleeping process is awakened.

Non-blocking IO

The use of blocking IO, described in “Blocking Writes” and “Blocking Reads”, is best suited for
use in multi-threaded applications and very simple applications with a single thread of
execution. The requirements of the user application may not be met by the use of blocking IO.
In such cases Non-blocking IO is required. In such cases, the user application will typically wish
to use select() on several file descriptors (one being the device). The use of select()
allows the application to be aware of when there is data available to be read from a descriptor,
and when data may be written to a descriptor. See the man page for select(2).

To enable the use of select() on the device file from user space, the poll() file operation
must be implemented in the driver. This function will be added to the ll_ex_fops structure.
Consult <Linux tree>/Documentation/filesystems/vfs.txt

References 1. UG200 Embedded Processor Block in Virtex-5 FPGAs Reference Guide

2. XAPP1126 Designing an EDK Custom Peripheral with a LocalLink Interface

3. Johnathan Corbet, Allesandro Runini, Greg Kroah-Hartman. 2005. LINUX DEVICE
DRIVERS. O’Reilly Media, Inc.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

5/5/09 1.0 Initial Xilinx release.

http://www.xilinx.com/support/documentation/user_guides/ug200.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1126.pdf
http://www.xilinx.com

Notice of Disclaimer

XAPP1129 (v1.0) May 5, 2009 www.xilinx.com 16

R

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This
Application Note is one possible implementation of this feature, application, or standard, and is
subject to change without further notice from Xilinx. You are responsible for obtaining any rights
you may require in connection with your use or implementation of this Application Note. XILINX
MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED
WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF DATA,
LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

http://www.xilinx.com

	Integrating an EDK Custom Peripheral with a LocalLink Interface into Linux
	Abstract
	Included Systems
	Introduction
	Hardware Requirements
	Reference System Specifics
	Block Diagram
	Address Map
	Overview of XPS LL EXAMPLE core

	Generate the Linux BSP
	Export the system to SDK
	Copy the driver
	Add the driver to the kernel configuration

	Executing the Reference System
	Executing the Reference System using the Pre-Built Bitstream and the Compiled Software Application
	Executing the Reference System from XPS for Hardware

	XLL Example Driver
	Linux Device Tree
	Driver initialization
	Major Device Number
	Register Access

	Interrupt Handlers
	The Bottom Half

	DMA Memory Management
	File Operations
	DMA receive operation

	DRIVER EXAMPLE USAGE (REVISITED):
	/proc File System

	Exercises for the User
	A Word on Driver Types
	Blocking Writes
	Blocking Reads
	Non-blocking IO

	References
	Revision History
	Notice of Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

