& XILINX.

UCF Editing

Objectives

After completing this module, you will be able to:

= List the tools available for creating and modifying UCFs

= Describe the behavior of designs with multiple constraint files
= Create groups by using the TNM and TNM_NET attributes

= Write a User Constraint File (UCF) containing the following constraints
— Grouping constraints
— Timing constraints
— Attributes
— 1/O constraints

= Describe constraint priority

UCF Editing - 2

© Copyright 2010 Xilinx i: XILINX®

Prerequisites

= Timing constraints modules

— Global Timing Constraints (Essentials of FPGA Design course)
 PERIOD, OFFSET, and PAD-TO-PAD
— Timing Groups and OFFSET Constraints (Designing for Performance course)
» Creating groups of path endpoints and THRU points
* Creating pin-specific and group-specific OFFSET constraints
— Path-Specific Timing Constraints (Designing for Performance course)
* Interclock domain constraints
* Multicycle path constraints
* False path constraints
* Constraint priority

UCF Editing - 3 © Copyright 2010 Xilinx (: XILINX@

Lessons

—) = Qverview
= Grouping Constraints
= Timing Constraints
= Constraint Priority
= Additional Constraints
= Summary

UCF Editing - 4 © Copyright 2010 Xilinx (: XILINX@

= UCF = User Constraint File

= Plain text file that can be modified in any text editor or in any of the tools that
support UCF editing

— The Constraints Editor does not support all constraints

» Syntax is case sensitive except for Xilinx constraint keywords (for example,
PERIOD, HIGH, LOW, ns, or ps)

= Statements must be terminated with a semicolon (;)
= Comments are entered with the pound sign (#)
= Statements do not need to be placed in any particular order

UCF Editing - 5 © Copyright 2010 Xilinx i: XILINX@

Multiple UCFs

* The ISE® tool allows multiple UCFs to be added to a project

= Convenient way to
— Separate placement constraints from timing constraints

— Add constraints provided by the tools (from the Architecture Wizard or the CORE
Generator™ tool) without using copy & paste

= The Constraints Editor opens the first UCF added to the project
— Other UCFs can be selected from inside the Constraints Editor
* The PlanAhead tool allows you to select which UCF file to open and write to

= |f multiple constraints conflict, then the last constraint takes implicit priority
over previous constraints

— More on constraint priority later

UCF Editing - 6 © Copyright 2010 Xilinx i: XI LINX@

Constraint Flow Review

edningc ncf

.bld, .nav

g
i

Map -mrp

pcf

— L

Place & Route par, .pad

hed

wr, .twx Timing Analysis Make Programming File

UCF Editing - 7 © Copyright 2010 Xilinx (: XILINX@

Classes of FPGA Implementation Constraints

= Grouping: Collects primitives together for later use with other constraints

= Timing: Describes the timing requirements of static timing paths to the
implementation tools

= Attribute: Defines the value of a property associated with a primitive

= Placement: Influences the physical placement of primitives by spatial
description

= Mapping: Provides specific direction to the mapping tool on an instance-by-
instance basis

= Routing: Provides specific direction to the place and route tool on an instance-
by-instance basis

UCF Editing - 8 © Copyright 2010 Xilinx i: XI LINX@

Tools for Editing Constraints

Tool Can Do Best At
Constraints Anything related to timing as Advanced constraints
Editor well as prorating (groups, multi-cycle,

prorating, ...)
PlanAhead™ | Virtually everything Area constraints
tool Pin placement
Text editor Everything None

UCF Editing - 9

© Copyright 2010 Xilinx

& XILINX.

Lessons

= Qverview

—) = Grouping Constraints
= Timing Constraints
= Constraint Priority
= Additional Constraints
= Summary

UCF Editing - 10 © Copyright 2010 Xilinx (: XILINX@

Specifying Groups

= Static timing paths begin and end at I/O pads and internal synchronous points

= To write effective constraints, you must group path endpoints together

UCF Editing - 11 © Copyright 2010 Xilinx (: XILINX@

User-Created Groups (TNM)

= TNM attribute = Timing NaMe
= TNM creates customized groups of path endpoints

— All elements tagged with the same TNM are considered a group

— Elements can be added to the same group using multiple statements
= Basic syntax

— INST <object_name> TNM = <identifier> ; # or

— NET <object_name> TNM = <identifier> ; # or

— PIN <object_name> TNM = <identifier> ;

— <object_name> is the name of an element, net or pin within the design

« Wildcards are allowed: “*” and “?”

— <identifier> is the name of the time group to create or add elements to

* can be any combination of letters, numbers, or underscores
* is case sensitive (TNM=abc = TNM=ABC)

UCF Editing - 12 © Copyright 2010 Xilinx i: XILINX@

ldentifying Elements for Group Creation

= Question: How do you determine the instance and signal names?
— Use names from the RTL that are known to be preserved
— Look through the netlist
— Use the Xilinx Constraints Editor

= Xilinx recommendation \/
— Use the Constraints Editor to make initial constraints and groups
— Reduce the number of constraints and add additional constraints with a text editor

UCF Editing - 13 © Copyright 2010 Xilinx (: XILINX@

TNM on Cells

= The TNM attribute on an instance places a single element into the group
— INST “sub_block1/reg_A” TNM = tgrp_group1;
= |nstance names can use wildcards

— All elements matched by the wildcard are placed in the group
— INST “sub_block1/reg_C?” TNM = tgrp_group2;

ofpIEl(o6. = tgrp_group1 contains:

sub_block = sub_block/reg_A
= {grp_group?2 contains:

D Q D Q D Q D Q
reg A| |reg B| leg c1l lreg c2 = sub_block/reg_C1
D D> D> D> = sub_block/reg_C2

UCF Editing - 14 © Copyright 2010 Xilinx i: XI LINX@

TNM on Hierarchical Blocks

= The TNM attribute on hierarchical block places all synchronous elements in
the hierarchical block and all levels of hierarchy below it in a group

— INST “Sub-block1/A_block” TNM = tgrp_group3;

= |nstance names can use wildcards

— INST /A_blOCk TNM =tgrp_grOUp4; . tgrp_gI’OUp3 contains:

Top_block , Sub_blockz = All synchronous elements in
Sub_blockl Sub-block1/A_block

>
A_Dblock faas
D_block| |E block| € B—b'OCk = tgrp_group4 contains:
= All synchronous elements in

v Sub-block1/A_block

C_block .
B Sub_block3 = All synchronous elements in
Sub_block2/A_block

UCF Editing - 15 © Copyright 2010 Xilinx i: XI LINX@

TNM and TNM_NET on Nets or Pins

= Placing TNM on a net groups path endpoints that are driven by the net/pin
— All synchronous elements that have a combinatorial path from the specified net or
pin
= However, TNM will not propagate through IBUF components
— The TNM will end up on the input pad

— Use TNM_NET constraint to propagate through IBUF components
 Syntax: NET <net_name> TNM_NET = <identifier> ;

= Xilinx recommends \/
— To group input pads, use a TNM on the net driven by the pad
— Use TNM_NET to group logic elements driven by a clock net
— Take care when using TNM_NET on non-clock nets

UCF Editing - 16 © Copyright 2010 Xilinx i: XILINX@

Predefined Groups

= You can use a predefined group in place of a user-defined group in any
constraint

» Predefined groups include:

— PADS: All 1/0 pads

- FFS: All flip-flops

— LATCHES: All latches

— RAMS: All RAM elements (distributed, Block, FIFO)
— DSPS: All DSP elements

= You can restrict the group by using name qualifiers
— A colon separated list of element names in brackets; wildcards are allowed
— Syntax: FFS(reg_A : reg_B : reg_C%)

UCF Editing - 17 © Copyright 2010 Xilinx i: XILINX@

Predefined Groups as Qualifiers

MYMACRO

= Use a predefined group keyword to restrict
the types of elements that are tagged with the
TNM

— INST MYMACRO TNM = core; 4

+ All elements within MYMACRO will be included
in the group

* Includes the two RAM components and one FF

— INST MYMACRO TNM = RAMS ram_core; —

* Only the two RAMS are included in this group
because of the qualifier

CLOCK

UCF Editing - 18 © Copyright 2010 Xilinx i: XILINX@

Apply Your Knowledge

1) What elements will the following groups contain?

NET PADCLK TNM = PADS padgroup;
NET PADCLK TNM = FFS flopgroup1 ;

NET INTCLK TNM = FFS flopgroup?2;

NET PADCLK TNM_NET = FFS flopgroup3;

FF1
PADCLK INTCLK

S

IPAD 1B

FF2

UCF Editing - 19 © Copyright 2010 Xilinx

& XILINX.

Answer

1) What elements will the following groups contain?
— NET PADCLK TNM = PADS padgroup;
Contains only the IPAD symbol

— NET PADCLK TNM = FFS flopgroup1;
* An empty group which will cause an error during NGDBUILD

— NET INTCLK TNM = FFS flopgroup?2;
* Includes FF1 and FF2
— NET PADCLK TNM_NET = FFS flopgroup3;
* Includes FF1 and FF2 PADCLK . INTCLK

| L~ C
IPAD IBUF
FF2
C

UCF Editing - 20 © Copyright 2010 Xilinx (: XILINX@

FF1

Combining Groups

= Use the TIMEGRP constraint to
— Combine multiple groups into one group
— Create groups by exclusion
— Define flip-flop subgroups by clock edge
= Syntax to combine groups
— TIMEGRP <newgroup> = <grp1> <grp2> [grp3...];
= Syntax to group by exclusion
— TIMEGRP <newgroup> = <grp1> [grp2...] EXCEPT <grp3> [grp4..],
= Syntax to group by clock edge
— TIMEGRP <newgroup> = [RISING | FALLING] <grp1>;

UCF Editing - 21 © Copyright 2010 Xilinx i: XILINX@

Apply Your Knowledge

gp1=A B SRS I e I B 2 e A st S
g2=D,E, G, H oA :F:Di |4 o
gp3=C, F et e T w
gro4=E, F, H, | o * | __TF 1
;tjcg | F _ il

2) Which flip-flops will each constraint include?
— TIMEGRP manyffs = grp1 grp2 grp3 ;
— TIMEGRP largeone = grp2 grp3 EXCEPT grp4;

UCF Editing - 22 © Copyright 2010 Xilinx (: XILINX@

Answer

gp1=A B e e T
gp2=D, E G H SRR Tel E:F:Dﬂ iech@i" |
grp3=C, F e e T TR
gro4=E, F, H, | o * | __TF 1
;tjcg | F _ il

2) Which flip-flops will each constraint include?
— TIMEGRP manyffs = grp1 grp2 grp3 ;
* Includes all flip-flops except |
— TIMEGRP largeone = grp2 grp3 EXCEPT grp4;
* Includes D, G, and C

UCF Editing - 23 © Copyright 2010 Xilinx (: XILINX@

Lessons

= Qverview

= Grouping Constraints
—) = Timing Constraints

= Constraint Priority

= Additional Constraints

= Summary

UCF Editing - 24 © Copyright 2010 Xilinx (: XILINX@

Global Timing Constraints

= Square brackets are used for optional parameters or arguments

— PERIOD

« NET <clk_net_name> TNM_NET = <clk_group>;

« TIMESPEC TS_<identifier> = PERIOD <clk_group> <value> [INPUT_JITTER <value>];
— OFFSETIN

* [TIMEGRP <pad_groupname>] OFFSET = IN <offset_time> [VALID <datavalid_time>]
{BEFORE|AFTER} <clk_name> [TIMEGRP <reg_groupname>] [{RISING | FALLING}];

— OFFSET OUT
* [TIMEGRP <pad_groupname>] OFFSET = OUT [<offset_time>] {BEFORE|AFTER} <clk_name>
[TIMEGRP <reg_groupname>] [REFERENCE_PIN <ref_pin>] [{RISING | FALLING}];
— Examples
* NET rd_clk TNM_NET = tnm_rd_clk;
« TIMESPEC TS_rd_clk = PERIOD tnm_rd_clk 7 ns INPUT_JITTER 100; #default ps
« OFFSET =IN 6 ns BEFORE rd_clk;
« OFFSET = OUT 5 ns AFTER rd_clk;

UCF Editing - 25 © Copyright 2010 Xilinx i: XILINX@

Optional OFFSET Parameters

TIMEGRP

— Groups of I/0 pads or synchronous elements can be identified to create very specific
constraints

VALID
— Defines the width of the input data window
RISING, FALLING
— Specifies which edge of the clock is used to capture the data
REFERENCE_PIN
— Used in conjunction with OFFSET OUT
— Defines the pin against which to report output skew in source-synchronous transmitters

UCF Editing - 26 © Copyright 2010 Xilinx (: XILINX@

FROM:TO Constraint

= Syntax: TIMESPEC TS<name> = FROM <group1> TO <group2> <value>
[DATAPATHONLY];

= TS<name> must always start with TS
— Any alphanumeric character or underscore can follow

= <group1> designates the origin of the path
= <group2> designates the destination of the path

<value> is in ns by default
— Other units are ps, ms
— Can be relative to another timespec constraint, such as TS_C2S/2 or TS_C2S*2

DATAPATHONLY indicates that the path analysis should not include clock
skew or phase information

UCF Editing - 27 © Copyright 2010 Xilinx i: XILINX@

Groups in FROM:TO

» The FROM and TO groups can be any group
= User defined groups
— Created by TNM or TIMEGRP
= Predefined groups
— FFS, RAMS, LATCHES...
— Can use name qualifiers to restrict the group, including wildcards
— TIMESPEC TS_fiforam2reg_a = FROM RAMS(*/fifo_ram?) TO FFS(reg_a) 10 ns;

UCF Editing - 28 © Copyright 2010 Xilinx (: XILINX@

Apply Your Knowledge

3) Write a timing specification to constrain all MY_MACRO

paths from the A registers to the R registers in - -

the hierarchical block MY_MACRO to a value of P1—— AL — 1 RLouT

10 ns — ||
D2 =g || = po| OUT2
03 | | mpg|| e pal OUTS
D4 — Ad —=—- R4| QUT4
CLK| | — ;

UCF Editing - 29 © Copyright 2010 Xilinx (: XILINX@

Answer

3) Write a timing specification to constrain all MY_MACRO
paths from the A registers to the R registers in - -
the hierarchical block MY_MACRO to a valug of D AT 51 -0uT!
10ns D2 = o || e ol OUT2
— TIMESPEC TS_areg2rreg = FROM FFS(MY_MACRO/A?) - .
TO FFS(MY_MACRO/R?) 10 ns; 03| | || e gl OUTS
D4 = M| = R4l OUT4
CLK| | — o

UCF Editing - 30 © Copyright 2010 Xilinx (: XILINX@

Apply Your Knowledge

4) Write constraints to create separate groups for the flip-flops and latches in
the instance mymac

— Use TNM on the hierarchy mymac

5) Constrain the path from the flip-flop group to the latch group to
TS_sys_clk100 * 2

S e mymac
— L FF1 |4D—
' FEF2 ’ ‘ [_}atchl
D
[} Q |
.: FF3

UCF Editing - 31 © Copyright 2010 Xilinx (: XILINX@

ANnswers

4) Write constraints to create separate groups for the flip-flops and latches in
the instance mymac

— INST mymac TNM = FFS mymac_ffs;
— INST mymac TNM = LATCHES mymac_latches;

5) Constrain the path from the flip-flop group to the latch group to
TS_sys_clk100 * 2

— TIMESPEC TS_mymac_ffs2latches = FROM mymac_ffs TO mymac_latches
TS_sys_clk100 * 2;

UCF Editing - 32 © Copyright 2010 Xilinx (: XILINX@

Ignoring Selected Paths (TIG)

Status
Registers

Control
Registers
(63:0)

Enable

BIDIR_PAD(7:0)

BIDIR_BUS(7:0)

» TIG = Timing IGnore, a.k.a. false path
= Why use a TIG?

— Decreases competition for routing resources

— False paths through 3-state buffers, static nets, nets, and paths that change infrequently or
where a path exists but is never actually used (above example)

= Syntax: [NET|PIN] <object_name> TIG [= TSid1, TSid2...];
— Ignores timing on all paths that contain <object_name>
» TIG can also be used as the value in a FROM:TO constraint

— Example: TIMESPEC TS_ignore = FROM group1 TO group2 TIG;
UCF Editing - 33 © Copyright 2010 Xilinx i: XILINX®

Apply Your Knowledge

6) Which paths are ignored?

= NETNETCTIG;
= TIMESPEC TS _TIG_AZE = FROM FFS(NETA) TO FFS(NETE) TIG;

~NETA
A
 NETB | o £ NETE
| B L%
L NETC| - =
. C | —
CNETD |
1D

UCF Editing - 34

© Copyright 2010 Xilinx (: XILINX®

Answer

6) Which paths are ignored?
— From register A to register E
— From register C to register E
— From register C to register F

—A 1 NETA
-} == L __NETE
. NETB | - TE
| B L:}D—
— NETC | L~ S -
I¢ /—=l | -
~—| NETD T

UCF Editing - 35 © Copyright 2010 Xilinx (: XILINX@

Lessons

= Qverview

= Grouping Constraints

= Timing Constraints
) = Constraint Priority

= Additional Constraints

= Summary

UCF Editing - 36 © Copyright 2010 Xilinx (: XILINX@

Timing Constraint Priority

= False Paths (TIG) Highest
= FROM:THRU:TO

= FROM:TO

= Pin-specific OFFSETs (Net OFFSET)

= Group-specific OFFSETs (Pad/Register

OFFSET) /
= Global OFFSETs —
= PERIOD Lowest

UCF Editing - 37 © Copyright 2010 Xilinx (: XILINX@

Priority for Conflicting TIMESPECs

= You can assign a priority to timespecs
— Except MAXDELAY and MAXSKEW
= Used when there are multiple timing constraints of the same type on a delay
path
— Example: More than one FROM TO type constraint

= Syntax: <constraint_definition> PRIORITY <value>;

— <value> represents the priority (between -1000 and 1000)
« Smaller number = higher priority

— Strategy: Start by assigning the highest priority = 0
* As you add additional constraints of higher priority, subtract 1
+ As you add additional constraints of lower priority, add 1

= Example: TIMESPEC TS_01 = FROM high TO low 8 ns PRIORITY 3;

UCF Editing - 38 © Copyright 2010 Xilinx i: XILINX@

Notes on Priority

» The PRIORITY value is only used when conflicting constraints are of the
same type

— AFROM:TO constraint can never have priority over a TIG constraint

= Constraints that have a PRIORITY value defined are given priority over
constraints that have no PRIORITY value defined

= |f multiple constraints conflict, then the last constraint takes implicit priority
over previous constraints

UCF Editing - 39 © Copyright 2010 Xilinx (: XILINX@

Apply Your Knowledge

1 FF FF2 —9— FF3 SN —

= Example
- FF1, FF2, FF3 are in fastgroup
— FF2, FF3, FF4 are in slowgroup
— TIMESPEC ts_fast = FROM fastgroup TO fastgroup 3 ns PRIORITY 1;
— TIMESPEC ts_slow = FROM slowgroup TO slowgroup 10 ns PRIORITY 0;

7) What happens to the path between FF2 and FF3, which is covered by both
timespecs?

UCF Editing - 40 © Copyright 2010 Xilinx (: XILINX@

Answer

1 FF FF2 —9— FF3 SN —
> > > >

7) What happens to the path between FF2 and FF3, which is covered in both
timespecs?

— Because the PRIORITY attribute is on the constraint, the path would be
constrained to 10 ns, rather than 3 ns

= Without the use of PRIORITY, there are several factors to consider when
choosing which constraint to apply

— See Constraints Guide > Constraints Entry > Constraints Priority

UCF Editing - 41 © Copyright 2010 Xilinx i: XILINX@

Lessons

= Qverview

= Grouping Constraints

= Timing Constraints

= Constraint Priority
—) = Additional Constraints

= Summary

UCF Editing - 42 © Copyright 2010 Xilinx (: XILINX@

MAXDELAY and MAXSKEW

= Use these attributes to constrain critical nets
— Not needed for nets that use global clock buffers
— Do not over constrain, which can adversely affect implementation
— Do not use to constrain clocks that use general routing resources

» Tools automatically recognize these clocks and use a predefined local clock routing
template for balanced skew and limited delay

» Using these constraints on clocks increases delay and skew
MAXDELAY syntax: NET <net_name> MAXDELAY = <delay_time>;
MAXSKEW syntax: NET <net_name> MAXSKEW = <delay_time>;
— <delay_time> is any numeric value

* Default unit is ns
— Do not set MAXSKEW to 0

» Can cause a software error

UCF Editing - 43 © Copyright 2010 Xilinx i: XILINX@

Attributes

= Attribute constraints control functionality or implementation of elements in a
design

= Basic syntax
— {INST | NET} <object_name> <attribute_name> = <attribute_value>;

= Attribute names can be found in the software documentation
— Constraints Guide
— Libraries Guides

= Example
— INST my_block_ram INIT_FILE = mem_contents;

UCF Editing - 44 © Copyright 2010 Xilinx (: XILINX@

/O Attributes

= Pin placement
— NET <net_name> LOC = <pin number>;
= |/O configuration
— NET <net_name> IOSTANDARD = </O_standard>;
— NET <net_name> SLEW = {FAST | SLOW};
— NET <net_name> DRIVE = <drive strength>;
= Multiple constraints can be defined in one statement
— Example: NET data_in LOC = A5 | SLEW = FAST,;
= Using IOB flip-flops
— Place the attribute IOB = {TRUE | FALSE | FORCE} on the flip-flop

UCF Editing - 45 © Copyright 2010 Xilinx i: XILINX@

Lessons

= Qverview

= Grouping Constraints

= Timing Constraints

= Constraint Priority

= Additional Constraints
—) = SUMMary

UCF Editing - 46 © Copyright 2010 Xilinx (: XILINX@

Apply Your Knowledge

8) Write the following constraints
— Multicycle path from FF2 to FF4, FFS (TS_CLK * 2)
— Timing IGnore on NETZ

— Maxdelay = 2.5 ns, Maxskew = 0.5 ns for NETC
> NETA NET1

N s | NETX —— NETS ..
e R L NET2 gl ouT!
N NETC
N3 _ NET3 _ NETY
NETD “|FF4 NETR NETT
NG FF2 = FF7 T OUT?
_ NFT4 NETZ [
oy~ — NETE |FF5
IN5 " _|FF3

UCF Editing - 47 © Copyright 2010 Xilinx (: XILINX@

Answer

8) Write the following constraints

— Multicycle path from FF2 to FF4, FFS (TS_CLK * 2)
« INST FF2 TNM = tnm_ff2;
« NETNETD TNM_NET = tnm_ffs4and?;
« TIMESPEC TS_ff2_to_ffs4and5 = FROM tnm_ff2 TO tnm_ffsdand5 TS_CLK * 2;
« or

« TIMESPEC TS_ff2_to_ffs4and5 = FROM FFS(NETD) to FFS (NETY: NETZ)
TS_CLK* 2;

— Timing IGnore on NETZ
« NETNETZTIG;

— Maxdelay = 2.5 ns, Maxskew = 0.5 ns for NETC
« NETNETC MAXDELAY =2.5ns;
« NETNETC MAXSKEW =0.5ns;

UCF Editing - 48 © Copyright 2010 Xilinx (: XILINX@

Apply Your Knowledge

9) How do you know if you did a good job constraining your design?

UCF Editing - 49 © Copyright 2010 Xilinx (: XILINX@

Answer

9) How do you know if you did a good job constraining your design?

— Are all the paths constrained? Use the Timing Analyzer to locate any
unconstrained paths

— Are failing paths over-constrained?
* Unidentified multi-cycle paths
Unidentified false paths

UCF Editing - 50 © Copyright 2010 Xilinx (: XILINX@

Summary

= Many tools available for entering, editing, and analyzing constraints
= The ISE software supports multiple UCFs

» Time groups create more specific timing constraints to help you define more
accurately your timing requirements to the implementation tools

* The TNM attribute and TIMEGRP create customized groups

» Predefined groups use keywords and qualifiers to define path endpoints

» TIG decreases competition for routing resources by ignoring noncritical paths
= PRIORITY ensures overlapping constraints are handled correctly

= MAXDELAY and MAXSKEW are constraints that can be used on critical nets
in a design

UCF Editing - 51 © Copyright 2010 Xilinx i: XI LINX@

