7-Series Architecture Overview

Zynq
Vivado 2013.2 Version
After completing this module, you will be able to:

- Describe the basic slice resources available in 7-Series FPGAs
- List memory hierarchy and various memory resources available
- Identify the basic I/O resources available in 7-Series FPGAs
- List some of the dedicated hardware features of 7-Series FPGAs
- Explain the available clocking resources and mechanism
- Identify latest members of Virtex-7 device family
- Identify the MMCM, PLL, and clock routing resources included with these families
- Describe the additional dedicated hardware for all the 7-series family members
Outline

Introduction to 7-Series FPGA
Logic Resources
I/O Resources
Memory and DSP48 Resources
XADC
Clocking Resources
Zynq Family
Summary
Introduction

All Xilinx FPGAs contain the same basic resources

- Logic Resources
 - Slices (grouped into configurable logic blocks (CLB))
 - Contain combinatorial logic and register resources
 - Memory
 - Multipliers
- Interconnect Resources
 - Programmable interconnect
 - IOBs
 - Interface between the FPGA and the outside world
- Other resources
 - Global clock buffers
 - Boundary scan logic

Through various generations, Xilinx added new architectural resources to target various markets and application areas
7-Series FPGA Families

<table>
<thead>
<tr>
<th></th>
<th>ARTIX™</th>
<th>KINTEX™</th>
<th>VIRTEX™</th>
<th>ZYNQ™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block RAM</td>
<td>12 Mb</td>
<td>34 Mb</td>
<td>65 Mb</td>
<td>240KB – 2180KB</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>40 – 700</td>
<td>240 – 1920</td>
<td>700 – 3960</td>
<td>80 – 900</td>
</tr>
<tr>
<td>Peak DSP Perf.</td>
<td>504 GMACS</td>
<td>2,450 GMACs</td>
<td>5,053 GMACs</td>
<td>1080 GMACs</td>
</tr>
<tr>
<td>Transceivers</td>
<td>4</td>
<td>32</td>
<td>88</td>
<td>16</td>
</tr>
<tr>
<td>Transceiver Performance</td>
<td>3.75Gbps</td>
<td>6.6Gbps and 12.5Gbps</td>
<td>12.5Gbps, 13.1Gbps and 28Gbps</td>
<td>6.6Gbps and 12.5Gbps</td>
</tr>
<tr>
<td>Memory Performance</td>
<td>1066Mbps</td>
<td>1866Mbps</td>
<td>1866Mbps</td>
<td>1333Mbps</td>
</tr>
<tr>
<td>I/O Pins</td>
<td>450</td>
<td>500</td>
<td>1,200</td>
<td>372</td>
</tr>
<tr>
<td>I/O Voltages</td>
<td>3.3V and below</td>
<td>3.3V and below</td>
<td>3.3V and below</td>
<td>3.3V and below</td>
</tr>
</tbody>
</table>

© Copyright 2013 Xilinx
The different families in the 7-series provide solutions to address the different price/performance/power requirements of the FPGA market

- Artix™-7 family: Lowest price and power for high volume and consumer applications
 - Battery powered devices, automotive, commercial digital cameras
- Kintex™-7 family: Best price/performance
 - Wireless and wired communication, medical, broadcast
- Virtex-7 family: Highest performance and capacity
 - High-end wired communication, test and measurement, advanced RADAR, high-performance computing
Common elements enable easy IP reuse for quick design portability across all 7-series families

- Design scalability from low-cost to high-performance
- Expanded eco-system support
- Quickest time to market

- Logic Fabric
 LUT-6 CLB
- Precise, Low Jitter Clocking
 MMCMs
- On-Chip Memory
 36Kbit/18Kbit Block RAM
- Enhanced Connectivity
 PCIe® Interface Blocks
- DSP Engines
 DSP48E1 Slices
- Hi-perf. Parallel I/O Connectivity
 SelectIO™ Technology
- Hi-performance Serial I/O Connectivity
 Transceiver Technology
Artix-7 Family

<table>
<thead>
<tr>
<th>Device</th>
<th>Logic Cells</th>
<th>Configurable Logic Blocks (CLBs)</th>
<th>Block RAM Blocks(3)</th>
<th>Clock Mgmt Tiles (CMTs)</th>
<th>PCIe(5)</th>
<th>GTPs</th>
<th>XADC Blocks(6)</th>
<th>Total I/O Banks(7)</th>
<th>Max User I/O(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC7A20SL</td>
<td>16,000</td>
<td>2,500</td>
<td>60</td>
<td>1,080</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>216</td>
</tr>
<tr>
<td>XC7A35SL</td>
<td>32,909</td>
<td>5,142</td>
<td>120</td>
<td>2,340</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>216</td>
</tr>
<tr>
<td>XC7A50SL</td>
<td>52,480</td>
<td>8,200</td>
<td>180</td>
<td>3,420</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>XC7A75SL</td>
<td>71,642</td>
<td>11,194</td>
<td>240</td>
<td>4,500</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>XC7A20SLT</td>
<td>16,000</td>
<td>2,500</td>
<td>60</td>
<td>1,080</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>216</td>
</tr>
<tr>
<td>XC7A35SLT</td>
<td>32,909</td>
<td>5,142</td>
<td>120</td>
<td>2,340</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>216</td>
</tr>
<tr>
<td>XC7A50SLT</td>
<td>52,480</td>
<td>8,200</td>
<td>180</td>
<td>3,420</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>XC7A75SLT</td>
<td>71,642</td>
<td>11,194</td>
<td>240</td>
<td>4,500</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>XC7A100T</td>
<td>101,440</td>
<td>15,850</td>
<td>240</td>
<td>4,860</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>XC7A200T</td>
<td>215,360</td>
<td>33,650</td>
<td>740</td>
<td>13,140</td>
<td>10</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

© Copyright 2013 Xilinx
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- XADC
- Clocking Resources
- Zynq Family
- Summary
Configurable Logic Block (CLB) in 7-Series FPGAs

- Primary resource for design
 - Combinatorial functions
 - Flip-flops
- CLB contains two slices
- Connected to switch matrix for routing to other FPGA resources
 - Carry chain runs vertically in a column from one slice to the one above
Two Types of Slices

Two types of slices

- SLICEM: Full slice
 - LUT can be used for logic and memory/SRL
 - Has wide multiplexers and carry chain

- SLICEL: Logic and arithmetic only
 - LUT can only be used for logic (not memory)
 - Has wide multiplexers and carry chain
Slice Resource

- Four six-input Look-Up Tables (LUT)
- Multiplexers
- Carry chains
- SRL
 - Cascade path is not shown
- Four flip-flops/latches
 - Four additional flip-flops
- The implementation tool will pack multiple slices in the same CLB if certain rules are followed
LUTs can be two 5-input LUTs with common input
- Minimal speed impact to a 6-input LUT
- One or two outputs

Any function of six variables or two functions of five variables
Wide Multiplexers

➢ Each F7MUX combines the outputs of two LUTs together
 – Can implement an arbitrary 7-input function
 – Can implement an 8-1 multiplexer

➢ The F8MUX combines the outputs of the two F7MUXes
 – Can implement an arbitrary 8-input function
 – Can implement a 16-1 multiplexer

➢ MUX is controlled by the BX/CX/DX slice input

➢ MUX output can drive out combinatorially or to the flip-flop/latch
- Carry chain can implement fast arithmetic addition and subtraction
 - Carry out is propagated vertically through the four LUTs in a slice
 - The carry chain propagates from one slice to the slice in the same column in the CLB above

- Carry look-ahead
 - Combinatorial carry look-ahead over the four LUTs in a slice
 - Implements faster carry cascading from slice to slice
Each slice has four flip-flop/latches (FF/L)
- Can be configured as either flip-flops or latches
- The D input can come from the O6 LUT output, the carry chain, the wide multiplexer, or the AX/BX/CX/DX slice input
Each slice also has four flip-flops (FF)
- D input can come from O5 output or the AX/BX/CX/DX input
 - These don’t have access to the carry chain, wide multiplexers, or the slice inputs
If any of the FF/L are configured as latches, the four FFs are not available
Slice Flip-Flop Capabilities

- All flip-flops are D type
- All flip-flops have a single clock input (CK)
 - Clock can be inverted at the slice boundary
- All flip-flops have an active high chip enable (CE)
- All flip-flops have an active high SR input
 - Input can be synchronous or asynchronous as determined by the corresponding configuration bit
 - Sets the flip-flop value to a pre-determined state as determined by the corresponding configuration bit
All flip-flops and flip-flop/latches share the same CK, SR, and CE signals
- This is referred to as the "control set" of the flip-flops
- CE and SR are active high
- CK can be inverted at the slice boundary

If any one flip-flop uses a CE, all others must use the same CE
- CE gates the clock at the slice boundary
- Saves power

If any one flip-flop uses the SR, all others must use the same SR
- The reset value used for each flip-flop is individually set by the SRVAL attribute
SLICEM Used as 32-bit Shift Register

- Versatile SRL-type shift registers
 - Variable-length shift register
 - Synchronous FIFOs
 - Content-Addressable Memory (CAM)
 - Pattern generator
 - Compensate for delay / latency

- Shift register length is determined by the address
 - Constant value giving fixed delay line
 - Dynamic addressing for elastic buffer

- Cascadable up to 128x1 shift register in one slice
Operation D - NOP must add 17 pipeline stages of 64 bits each
- 1,088 flip-flops (hence 136 slices) or
- 64 SRLs (hence 16 slices)
SLICEM Used as a Distributed SelectRAM Memory

➤ Uses the same storage that is used for the look-up table function

➤ Synchronous write, asynchronous read
 – Can be converted to synchronous read using the flip-flops available in the slice

➤ Various configurations
 – Single port
 • One LUT6 = 64x1 or 32x2 RAM
 • Cascadable up to 256x1 RAM
 – Dual port (D)
 • 1 read / write port + 1 read-only port
 – Simple dual port (SDP)
 • 1 write-only port + 1 read-only port
 – Quad-port (Q)
 • 1 read / write port + 3 read-only ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Dual Port</th>
<th>Simple Port</th>
<th>Quad Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUT6</td>
<td>32x2D</td>
<td>32x6SDP</td>
<td>32x2Q</td>
</tr>
<tr>
<td>LUT4</td>
<td>32x4D</td>
<td>64x3SDP</td>
<td>64x1Q</td>
</tr>
<tr>
<td>LUT6</td>
<td>64x1D</td>
<td>128x1D</td>
<td></td>
</tr>
<tr>
<td>LUT6</td>
<td>64x2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128x1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256x1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each Port Has Independent Address Inputs
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- XADC
- Clocking Resources
- Zynq FPGA
- Summary
I/O Interface Challenges

- **High-speed operation with maintained signal integrity**
 - Source-synchronous operation (clock forwarding)
 - System-synchronous operation (common systems clock)
 - Terminate transmission lines to avoid signal reflections

- **Drive and receive data on wide parallel buses**
 - Compensate for bus skew and clock timing errors
 - Conversion between serial and parallel data
 - Achieve very high bit rate (> 1 Gbps)

- **Single Data Rate (SDR) or Double Data Rate (DDR) interfaces**

- **Interface to many different standards**
 - Different voltages, drive strengths and protocols
7-Series FPGA I/O

- **Wide range of voltages**
 - 1.2V to 3.3V operation

- **Many different I/O standards**
 - Single ended and differential
 - Referenced inputs
 - 3-state support

- **Very high performance**
 - Up to 1600 Mbps LVDS
 - Up to 1866 Mbps single-ended for DDR3

- **Easy interfacing to standard memories**
 - Hardware support for QDRII+ and DDR3

- **Digitally controlled impedance**

- **Low power**
 - Features to reduce power
I/O Types

Two different types of I/O in 7-series FPGAs

- High Range (HR)
 - Supports I/O standards with Vcco voltages up to 3.3V

- High Performance (HP)
 - Supports I/O standards with Vcco voltages up to 1.8V only
 - Designed for the highest performance
 - Has ODELAY and DCI capability

<table>
<thead>
<tr>
<th></th>
<th>Artix-7 Family</th>
<th>Kintex-7 Family</th>
<th>Virtex-7 Family</th>
<th>Virtex-7 XT/HT Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Range</td>
<td>All</td>
<td>Most</td>
<td>Some</td>
<td></td>
</tr>
<tr>
<td>High Performance</td>
<td>Some</td>
<td>Most</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>
I/O Columns and Types in Artix-7

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mid-Range Devices</th>
<th>Larger Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT Columns</td>
<td>1 + Partial</td>
<td>2</td>
</tr>
<tr>
<td>I/O Columns</td>
<td>1 + Partial</td>
<td>2</td>
</tr>
<tr>
<td>GP Quads</td>
<td>Partial</td>
<td>Embedded in Fabric</td>
</tr>
<tr>
<td></td>
<td>Shared with I/O</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of I/O Columns and Types in Artix-7](image-url)
P and N pins can be configured as
- Individual single-ended signals or
- Differential pair

Receiver can be standard CMOS or voltage comparator
- When standard CMOS
 - Logic 0 when "near" ground
 - Logic 1 when "near" V_{CCO}
- Referenced to V_{REF}
 - Logic 0 when below V_{REF}
 - Logic 1 when above V_{REF}
- Differential
 - Logic 0 when $V_P < V_N$
 - Logic 1 when $V_P > V_N$
I/O Logical Resources

- Two blocks of logic per I/O pair
 - Master and slave
 - Can operate independently or concatenated

- Each block contains
 - ILOGIC/ISERDES
 • SDR, DDR, or high-speed serial input logic
 - OLOGIC/OSERDES
 • SDR, DDR, or high-speed serial output logic
 - IDELAY
 • Selectable fine-grained input delay
 - ODELAY
 • Selectable fine-grained output delay
 • Only available on High Performance I/O
Two types of ILOGIC blocks
- ILOGICE2 for High Performance banks
- ILOGICE3 for High Range banks
 • Has zero hold delay capability

ILOGIC inputs come from the input receiver
- Directly or via the IDELAY block

Outputs drive the FPGA fabric
- Directly (no clocked logic) or
- Via the IDDR
 • In SDR mode on rising or falling edge of clock
 • In DDR mode on both edges of clock
 ▪ Can also use two clocks, 180° out of phase
OLOGICE2 for HP banks, OLOGICE3 for HR banks

Output of OLOGIC connects to the output driver directly, or via the ODELAY
- ODELAY is available in HP banks only

Output is driven directly from the fabric
- Directly, through an SDR flip-flop or via the ODDR using both edges of clock

Each OLOGIC block contains two ODDR
- One for controlling the data to the output driver
- One for controlling the 3-state enable
- Both ODDR are driven by same clock and reset

SAME_EDGE or OPPOSITE_EDGE only
ISERDES: Input Serial-to-Parallel Converter

- Clocks in data from input pad or IDELAY
 - D is clocked on high speed clock (CLK)
 - Can be SDR or DDR

- Sends de-serialized data to fabric
 - Q is clocked on low speed clock (CLKDIV)

- CLK and CLKDIV must be in phase

- De-serializes data
 - Single data rate: 2, 3, 4, 5, 6, 7, 8
 - Double data rate: 4, 6, 8

- Cascade with slave for wider ratios
 - Double data rate: 10, 14

- Has BITSLIP logic for framing parallel data
OSERDES: Output Parallel-to-Serial Converter

- Serializes out data to output pad or ODELAY
 - Q is clocked on high speed clock (CLK)
 - Can be SDR or DDR

- Parallel data comes from fabric
 - D is synchronous to low speed clock (CLKDIV)

- **CLK and CLKDIV must be in phase**

- Serializes data
 - Single data rate: 2, 3, 4, 5, 6, 7, 8
 - Double data rate: 4, 6, 8

- **Cascade with slave for wider ratios**
 - Double data rate: 10, 14

- **When using 3-state serializer, both the data and 3-state width must be 4**
 - Clocks are shared between both serializers
Separate IDELAY and ODELAY delay lines
- IDELAY is available in both HR and HP banks
- ODELAY is only available in HP banks

Delay line elements are calibrated using the IDELAYCTRL cell
- Delay is process, temperature, and voltage independent

IDELAY and ODELAY have almost identical capabilities
- IDELAY can also be accessed from the fabric

Tap counter value can be accessed via FPGA fabric
- Monitor, increment, decrement, or set the tap value; tap value can be from 0 to 31

Reference frequency can be 200 MHz in all speed grades; 300 MHz is also allowed in fastest speed grade
- Results in 78 ps or 52 ps per tap
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- XADC
- Clocking Resources
- Zynq FPGA
- Summary
All members of the 7-series families have the same Block RAM/FIFO

- Fully synchronous operation
 - All operations are synchronous; all outputs are latched
- Optional internal pipeline register for higher frequency operation
- Two independent ports access common data
 - Individual address, clock, write enable, clock enable
 - Independent data widths for each port
Multiple configuration options
- True dual-port, simple dual-port, single-port

Integrated cascade logic

Byte-write enable in wider configurations

Integrated control for fast and efficient FIFOs

Integrated 64 / 72-bit Hamming error correction

Separate Vbram supply to ensure block memory functionality in -1L
Single-Port Block RAM

- **Single read/write port**
 - Clock: CLKA, Address: ADDRA, Write enable: WEA
 - Write data: DIA, Read data: DOA

- **36-kbit configurations**
 - 32k x 1, 16k x 2, 8k x 4, 4k x 9, 2k x 18, 1k x 36

- **18-kbit configurations**
 - 16k x 1, 8k x 2, 4k x 4, 2k x 9, 1k x 18, 512 x 36

- **Configurable write mode**
 - WRITE_FIRST: Data written on DIA is available on DOA
 - READ_FIRST: Old contents of RAM at ADDRA is presented on DOA
 - NO_CHANGE: The DOA holds its previous value (saves power)

- **Optional output register for maximum performance (DOA_REG=1)**
Two separate read/write ports
- Each port has separate clock, address, data in, data out, write enable...
 - Clocks can be asynchronous to each other
- The two ports can have different widths
 - Same configurations as when single ported
- The two ports can have different write modes

No contention avoidance when both ports access the same address, except
- If clocked by the same clock, and the write port is READ_FIRST, the read port gets the old data
Simple Dual-Port Block RAM

- One read port and one write port
 - Each port has separate clock and address
- In 36-kbit configuration, one of the two ports must be 72 bits wide
 - The other port can be x1, x2, x4, x9, x18, x36, or x72
- In 18-kbit configuration, one of the two ports must be 36 bits wide
 - The other port can be x1, x2, x4, x9, x18, or x36
Built-in cascade logic for 64Kx1
- Cascade two vertically adjacent 32Kx1 block RAMs without using external CLB logic or compromising performance
- Saves resources and improves speed of larger memories

Cascade option for larger arrays
- 128Kb, 256Kb, 512Kb, 1 Mb, …
- Using external CLB logic for depth expansion
 • Not quite as fast as cascaded block RAMs
- Width expansion uses parallel block RAMs

Example: Cascade 8 block RAMs to build 256-Kb memory
FIFO

- **Full featured**
 - Synchronous or asynchronous read and write clocks
 - Four flags
 - Full, empty, programmable almost-full/empty
 - Optional first-word-fall-through

- **FIFO configurations**
 - Any 36-Kb block RAM: 8Kx4, 4Kx9, 2Kx18, 1Kx36, 512x72
 - Any 18-Kb block RAM: 4Kx4, 2Kx9, 1Kx18, 512x36
 - Write and read width must be equal

- **Can use the integrated error correction when used in the x72 width**
7-Series DSP48E1 Slice

- 25x18 signed multiplier
- 48-bit add/subtract/accumulate
- 48-bit logic operations
- Pipeline registers for high speed
- Pattern detector
- SIMD operations (12/24 bit)
- Cascade paths for wide functions
- Pre-adder
Using DSP48 for Non-DSP Function

START: This is the typical adder tree found in many signal processing designs.

Remove all pipelining from the tree. This makes it easier to understand and visualize the changes.

Rearrange the tree. Notice that functionally has not changed. The diagram has just been redrawn.

Pipelining is required for performance. Adding one in the chain requires one in the data path delay as well. Determining mapping to DSP48E is easy now.
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- XADC
- Clocking Resources
- Zynq FPGA
- Summary
XADC and AMS

XADC is a high quality and flexible analog interface new to the 7-series
- Dual 12-bit 1Msps ADCs, on-chip sensors, 17 flexible analog inputs, and track & holds with programmable signal conditioning
- 1V input range
- 16-bit resolution conversion
- Built in digital gain and offset calibration

Analog Mixed Signal (AMS)
- Using the FPGA programmable logic to customize the XADC and replace other external analog functions; for example, linearization, calibration, filtering, and DC balancing to improve data conversion resolution
Fast sampling
- Conversion time of 1 us with support for simultaneous sampling
- Flexible timing modes (self and externally triggered sampling modes)
- Separate track/hold amplifier for each ADC ensures maximum throughput using multiplexed analog input channels

Flexible analog inputs
- Differential analog inputs with high common mode noise rejection
- Support for unipolar, bipolar, and true differential input signal types
XADC’s Other Features

- **Internal and external multiplexing and sampling**
 - Can sample internal power supplies and temperature
 - Multiplexes internal sources and 17 external analog inputs
 - Can control an external analog multiplexer to reduce pin count

- **Flexible triggering**
 - Conversion data is stored in internal status registers
 - Internal control registers control source selection, sampling, and alarms
 - Registers can be accessed internally via the dynamic reconfiguration port (DRP)
 - Register can be accessed via JTAG
 - Available on power up, before configuration

- **Operates over a wide temperature range (−40°C to +125°C)**
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- XADC
- **Clocking Resources**
- Zynq FPGA
- Summary
Modern applications have complex clocking requirements
- Extremely high-performance clock signals
- Support for multiple frequency domains across a wide frequency range
- De-skewing of clocks relative to one another
- Low jitter and precise duty cycle to maintain the widest possible data valid window
- Lowest possible system power

Xilinx FPGAs have a rich mixture of clocking resources to accommodate these requirements
- The perfect balance of resources at the right cost
Clock Management

- **Systems usually require multiple clock frequencies from the same source**
 - Minimizing the number of oscillators lowers system cost

- **External clock sources can often be noisy**
 - Filtering jitter cleans up clocks widening the data valid window

- **Many circuits need to be clocked at the same time to ensure correct operation**
 - De-skewing and aligning clocks eliminates hold-time issues and race conditions
Global clock buffers
- High fanout clock distribution buffer

Low-skew clock distribution
- Regional clock routing

Clock regions
- Each clock region is 50 CLBs high and spans half the device

Clock management tile (CMT)
- One Mixed-Mode Clock Managers (MMCMs) and one Phase Locked Loop (PLL) in each Clock
- Performs frequency synthesis, clock de-skew, and jitter-filtering
- High input frequency range

Simple design creation through the Clocking Wizard
Clock-Capable Inputs

» All synchronous designs need at least one external clock reference
 – Many designs require several clock sources

» These sources need to be brought into the FPGA and connected to the internal FPGA clock resources

» Every 7-series FPGA has four clock-capable inputs in each bank
 – These inputs are regular I/O pins with dedicated connections to internal clock resources
 • When not used as clock inputs, they can be used as a regular I/O pin
 – Each clock input can be used as a single-ended clock input, or can be paired with an adjacent pin to form a differential clock input
 • Each bank can therefore have four single-ended or four differential clock inputs
 – Two of the four are Multi-Region Clock Capable (MRCC) and the other two are Single Region Clock Capable (SRCC)
An FPGA is a regular array of resources
- Many of these resources require clocks for synchronous operations
 - Slice flip-flops, input/output flip-flops, block RAMs, DSP slices
- In order to implement synchronous designs, clocks must be distributed to these clocked elements

For synchronous operation, clocks must arrive at the clocked elements with
- Extremely low clock skew: Ensures minimal internal hold-time issues
- Low clock jitter: Allows for highest performance
- Duty cycle preservation: Important for Double Data Rate (DDR) applications
- Low insertion latency: Important for synchronous input and output interfaces

See next slide for the die
The Clock Buffer and Routing Column contains only the global clock buffers and routing.

The MMCMs and PLLs are located in the CMT columns that are immediately adjacent to the IO columns.

The global clock buffers (BUFG) are in the middle of the chip. These drive the vertical spines of the global clock network.

There are also regional clock routing resources driven by BUFRs.
The horizontal spines of the global clock network run through the center of each clock region. These horizontal spines are driven by BUFH buffers.

Clocks are driven up and down from the center horizontal row (HROW) of each clock region.

The BUFIO are placed within the I/O column, and drive the I/O clock network in that bank.

The BUFMR are dedicated buffers that allow clock inputs to drive the BUFIOs and BUFRs of adjacent regions.
Larger clock region than previous families
- 50 CLBs high, 50 I/Os high
- Same size as I/O bank
- Half width of device
- 2–24 regions per device for 7-Series

Resources per clock region
- 12 global clock networks
- Driven by BUFH
- 4 regional clock networks
- Driven by BUFR
- 4 I/O clock networks
- Driven by BUFIO
Global Clock Buffer (BUFGCTRL)

- **BUFGCTRLs (or BUFG) reside in the center of the device**
- **BUFGCTRLs can be driven by**
 - Clock-capable I/O (CCIO) in the same half
 - CMT outputs in the same half
 - Gigabit transceiver clocks in the same half
 - Other BUFG, interconnect, or BUFR
- **BUFGCTRL outputs drive the vertical global clock spine**
- **BUFGCTRL component implements**
 - Simple clock buffer (BUFG)
 - Clock buffer with clock switching (BUFGMUX or BUFGMUX_CTRL)
 - Clock buffer with clock enable (BUFGCE)
Outline

» Introduction to 7-Series FPGA
» Logic Resources
» I/O Resources
» Memory and DSP48 Resources
» XADC
» Clocking Resources
» Zynq FPGA
» Summary
Zynq-7000 Family Highlights

Complete ARM®-based processing system
- Application Processor Unit (APU)
 - Dual ARM Cortex™-A9 processors
 - Caches and support blocks
- Fully integrated memory controllers
- I/O peripherals

Tightly integrated programmable logic
- Used to extend the processing system
- Scalable density and performance

Flexible array of I/O
- Wide range of external multi-standard I/O
- High-performance integrated serial transceivers
- Analog-to-digital converter inputs
The Zynq-7000 AP SoC architecture consists of two major sections

- **PS: Processing system**
 - Dual ARM Cortex-A9 processor based
 - Multiple peripherals
 - Hard silicon core

- **PL: Programmable logic**
 - Shares the same 7-series programmable logic as
 - Artix™-based devices: Z-7010 and Z-7020 (high-range I/O banks only)
 - Kintex™-based devices: Z-7030 and Z-7045 (mix of high-range and high-performance I/O banks)
Outline

- Introduction to 7-Series FPGA
- Logic Resources
- I/O Resources
- Memory and DSP48 Resources
- Clocking Resources
- Zynq FPGA
- Summary
The 7-series FPGA slices contain four 6-input LUTs, eight registers, and carry logic
- LUTs can perform any combinatorial function of up to six inputs
- LUTs are connected with dedicated multiplexers and carry logic
- Some LUTs can be configured as shift registers or memories
- Slices also contain carry logic and the MUXF7 and MUXF8 multiplexers
- The MUXF7 multiplexers combine LUT outputs to create 7-input functions or 8-input multiplexers
- The MUXF8 multiplexers combine the MUXF7 outputs to create 8-input functions or 16-input multiplexers
- The carry logic can be used to implement fast addition, subtraction, and comparison operations

The 7-series FPGA IOBs contain DDR registers as well as SERDES resources

The SelectIO™ interfaces enable direct connection to multiple I/O standards
Summary

- The 7-series FPGA includes dedicated block RAM and DSP slice resources
- The 7-series FPGAs includes dedicated MMCMs, PLLs, and routing resources to improve your system clock performance and generation capability
- The 7-series FPGAs include other dedicated hardware such as XADC
- The Zynq-7000 processing platform is a system on a chip (SoC) processor with embedded programmable logic fabric of either Artix or Kintex 7-series FPGA