数据采集

作者:Sleibso,编译:csc57

TEWS科技的TXMC638型号24通道,16位,每通道5M样本/秒采样率的XMC卡将24个ADC通道 (采用凌力尔特LTC2323-16 模数转换芯片,采样率5Msps,逐次逼近型寄存器) 集成到可编程数据采集系统上,板卡上载有赛灵思的Kintex-7 FPGA(K160T,K325T或K410T)与1GB32位宽的板上DDR3 SDRAM芯片。除此之外,TXMC638还提供三个100欧姆交流耦合,宽输入电压范围的差分输入端子,所有的输入输出口和三个100欧姆的输入端子都连接在98个引脚的Samtec ERF8-049接插件端子。TXMC638上的FPGA已经装载了参考设计,用户除了可以使用赛灵思的USB编程器对FPGA编程,还可以通过板上的配置控制器(BCC)下载设计。对于在系统编程,FPGA通过串口SPI闪存配置,实时调试与读取可以通过JTAG口。对于PCIe标准,Xilinx Tandem配置可以用来配置FPGA, ”Tandem PROM“ 是推荐的方法集。XMC采集卡的框图如下:

基于eMMC的128路数据采集系统设计

作者:侯天喜,李锦明,马 林,降 帅;2017年电子技术应用第9期

摘 要: 针对水下模拟船舱相关参数的高速多次采集存储任务,设计了一种基于eMMC的多通道数据采集系统。该系统以FPGA为主控芯片,控制8个通道模拟多路复用开关和8个AD转换器来实现128路信号同时采集。与传统采集系统相比,该系统以eMMC为存储单元,解决了传统的以Flash为存储模块的复杂的坏块检测与系统管理等问题。试验证明,128路数据采集存储系统的误差可控制在0.1%范围内,能够确保已存的数据可靠、有效。

0 引言

当今海洋已经和太空一样成为人类探索自然的重要领域,我国水下探测设备的水平已达到一个新的高度。随着我国水下探测技术的进步,对数据采集及存储测试仪器的可靠性、高速、大容量、多通道等技术参数提出了更高的要求[1-2]。本文的128路数据采集及存储系统主要完成对水下模拟船舱相关参数的高速多次采集存储任务,以eMMC为存储单元,解决了传统的以Flash为存储模块的复杂的坏块检测与系统管理等问题。该系统可进行多次触发,采集并存储采集数据;通过读数盒与上位机通信并传输采集的试验数据。

作者:清风流云

在之前接触的设计中如果涉及要实现ADC采样的话,往往会从精度和速率来考虑对性能的影响,一般来说精度是固定的或有一个最大精度设置,但是采样速率的话,过快会造成采样不准确,往往会对整个设计的性能造成限制,所以一直期望有这样一个系统:可以实现高速ADC采样并将数据远端存储也可以本地存储,最关键的是采样速率要快,存储的速度要快,同时在设计开发是灵活度要高。而VadaTech最新推出的VT988恰好就是这样一个系统原型。

VadaTech高速16通道数据采集系统VT988
VadaTech最新推出的高速数据采集系统支持16通道8bit的ADC模数转换,其采样数率高达3G每秒,最关键的是这个系统采用了之前没有见过的独特架构来实现。在这个系统中,巧妙地将一款Xilinx 的Kintex-7 FPGA和 一块 Nvidia的Jetson TX2 SOM系统结合在一起,下面是这个系统的方框图(刚好是上图展开的内部结构图):

多通道GNSS数据采集平台的设计与实现

作者:赵玉东,秦红磊,张润萍,2017年电子技术应用第7期

摘 要: 随着GNSS系统的发展,多径效应逐渐成为影响定位精度和可靠性的重要因素之一。为了验证天线阵列方法对于多径效应的消除情况,需要对多个天线接收到的数据进行实时同步采集存储。为了实现这一目标,利用基于PCIE通信总线的FPGA开发板与多路AD采集卡设计并实现了满足系统要求的数据采集平台。首先简要介绍了该采集平台的结构及PCIE通信链路的搭建,然后设计实现了一种数据连续存储的方法,最后通过实验验证了该方法的可行性及采集平台的整体性能。

0 引言

对于NI很多专注于数据采集领域的客户来说,对采集到的信号在前端加入滤波功能是非常常见的需求。但是,可能由于他们对NI产品不够了解,不知道这部分功能完全可以由FPGA来完成,从而让NI错失应有的订单和机会。例如,客户原本的系统构建是在传感器与NI cDAQ之间再外加滤波电路。明了这个需求以后,我们完全可以向客户推荐具有FPGA终端的cRIO,这样的解决方案即简化了客户的系统构建方案,同时帮NI增加了销售额,两全其美!那么问题就来了,我们要如何在LV FPGA中实现一个靠谱的滤波器功能呢?

第一步:创建项目

创建任何一个具有FPGA终端的设备和LV 项目。本文中利用cRIO 9036为例。注:本文中所有内容均可以利用仿真模式实现,包括FPGA中的滤波器算法,读者可以在没有硬件资源的情况下模拟本文中的操作。实际体会IP CORE的使用。

第二步:生成滤波器系数文件“.coe”

为您的测量应用选择合适的总线

当您在上百个不同的数据采集(DAQ)设备,有各种各样的总线选择的时候,可能很难为您的应用需求选择合适的总线。 每条总线都有不同的优点,比如在吞吐量、延迟、便携性或离主机的距离等方面具有不同的优势。 本白皮书探讨了最常见的PC总线选型,并概述了为测量应用选择合适的总线时,技术方面的考虑因素。

1.有多大的数据量经过该总线?
所有的PC总线在一定的时间内可以传输的数据量都是有限的。 这就是总线带宽,往往以兆字节每秒(MB/s)表示。 如果动态波形测量对您的应用十分重要,一定要考虑使用有足够带宽的总线。

根据您选择的总线,总带宽可以在多个设备之间共享,或只能专用于某些设备。 例如,PCI总线的理论带宽为132 MB/s,计算机中的所有PCI板卡共享带宽。千兆以太网提供125 MB/s的带宽,子网或网络上的设备共享带宽。 提供专用带宽的总线,如PCI Express和PXI Express,在每台设备上可提供最大数据吞吐量。

当进行波形测量时,采样率和分辨率需要基于信号变化的速度来设置。 您可以记录每个采样的字节数(向下一个字节取整),乘以采样速度,再乘以通道的数量,计算出所需的最小带宽。

例如,一个16位设备(2字节)以4 MS/s的速度采样,四个通道上的总带宽为

基于FPGA的超声数据采集装置的设计与实现

作者:张摇鹏,杜彬彬,任勇峰 中北大学仪器科学与动态测试教育部重点实验室;电子测试技术国家重点实验室

摘要:为了实现对某航天器在地面及飞行过程中的超声数据进行高精度、高速采集的功能,根据测量系统的技术要求,设计数据采集装置的硬件电路和时序控制逻辑。为了满足恶劣的环境测试要求,设计采用高速、高精度、宽温度范围的THS1408模数转换器。选取高速运放AD8028 进行信号调理,以FPGA 作为逻辑控制器,控制THS1408 进行模数转换。经测试,采集精度优于0. 5%,满足实际工程需要,具有很高的可靠性,已成功应用于该测量系统。

作者:陆启帅1, 2 1.中国科学院国家天文台南京天文光学技术研究所,2.中国科学院南京天文光学技术重点实验室

摘要: 在天文光学精密测量中, 纳米精度的压电陶瓷传感器常作为微位移执行器,驱动各种精密位移。为进一步提高其采集精度和实时性,设计了基于Zynq7000双核ARM处理器的采集系统。在Zynq的PL部分实现数据采集和OLED显示IP核,以CPU0作为主处理器,实现系统的控制和压电陶瓷电压的采集,其采集频率达到30 kHz,数据分辨率为千万分之一,绝对精度达到10 μV;CPU1作为从处理器,在OLED上实时显示信息。

引言
压电陶瓷(Piezoelectric,PZT)以其特有的体积小、响应快、精度高和微动作功能而成为近年来天文光学精密测量中广泛应用的材料之一。因此,其采集精度和实时性是其关键技术之一。本设计以Xilinx公司的Zynq7000双核ARM处理器作为设计平台,实现对PZT的高速和高精度采集。Zynq是以ARM为核心、以FPGA作为可编程外设的全新架构处理器,其ARM核是由2个CortexA9 CPU组成的AMP系统。

基于ECT的高速数据采集系统设计

摘要:数据采集系统的速度制约了电容层析成像技术在航空发动机气路监测系统等高速设备中的应用。为此,设计了一种基于FPGA的新型电容数据采集系统,采用DDR2存储技术和PCI总线技术实现了数据的高速传输。同时应用卡尔曼滤波器代替传统的FIR滤波器,有效提高了滤波效率。测试结果表明,该系统具有抗干扰能力强、采样精度高、处理速度快等优点。

航卒发动机结构复杂、工作环境恶劣。对其准确快速检测一直是航空公司面临的重大技术难题。

基于FPGA+ARM的数据采集系统设计

摘要:设计了基于FPGA 与ARM 芯片的数据采集系统,FPGA 负责控制A/D 转换器,保证了采样精度与处理速度,ARM 负责逻辑控制及与上位机交互的实现,并将采集到的数据通过USB 高速上传至主机进行实时处理。对模拟数据采集的测试结果达到了较高的采样精度和速度,验证了整个系统的高速性和可行性。

随着计算机技术与现代工业系统的发展,工业领域中对数据采集的精度和数据处理的实时性提出了更加苛刻的要求,以保证后续更加复杂的控制,而传统的数据采集系统一般采用A/D 芯片与主控芯片搭配的方法,处理速度慢、功能单一,当被测对象复杂且数据量较大时,很难满足对数据高精度的采样,而通过RS232 串口与上位机通信则更无法保证数据处理的实时性。针对这一实际情况,设计了基于FPGA 与ARM 搭配的数据采集系统,FPGA 负责保证数据采样的高精度和高速度,而ARM 作为主控芯片,嵌入Linux 内核,负责控制整个系统,并将数据通过USB高速上传到上位机中,借助上位机的强大运算能力,保证数据处理的实时性,同时根据不同的被测信号只需选择相应的数据采集卡,即可方便简单地组成一个用户自定义的数据采集系统,具备良好的通用性。

同步内容