示波器

示波器原来有这个秘密?你知道吗?

作者:Steve Leibson,编译: 蒙面侠客

背景:
示波器是我们在物理试验、电路硬件调试、智能硬件开发等领域都能见到的一种仪器,就像是医生的听诊器,作为硬件研发工程师都要用的溜溜的。那么,里面到底是怎么样的一种构造呢?比较好奇的玩家可能已经想把实验室的示波器给拆开看看了,今天小编来满足一下比较好奇的小伙伴们,我们来一起看一下一款数字荧光示波器的内部构造。

今天拆的是Uni-T Ultra Phosphor UPO2104CS型号的示波器,如图.1所示,我们打开后竟然在示波器了发现了Xilinx Spartan-6 FPGA。是不是瞬间感觉自己也能做一台示波器出来,同时好奇这FPGA在示波器中的作用是什么?接着往下看细节,此示波器中的Spartan-6 LX45 FPGA主要管控了DSO的信号采集内存,内存包含了一个快速的SRAM和SDRAM。

作者:蒙面侠客

硬件开发出问题的时候我们首先想到的工具是示波器、任意波形发生器、网络分析仪、频谱分析仪、数字总线分析仪等设备。还没有列举完这些仪器,想必你脑子里已经出现了一个试验台,上面罗列着各种价格不菲的高档仪器。

作为电子攻城狮,你是否曾经或多或少遇到过类似的场景:同样是在同一起跑线上准备“屡起袖子搞点事情”,当你还在为去哪儿才能一次性借用到项目开发所需的多台实验室设备而烦恼时,时常你会发现,身边的那些学霸与技术大牛们,早已泰然自若地搞定了项目的一切,伴随着与学霸擦肩而过时对方所投来的淡定中略带得意的小眼神,让你心中顿时有一句那啥不知当讲不当讲...

你以为,每一名电子工程学霸都是天生的?图样图森破了吧~~事实上,学霸们一定不曾告诉你,一个能放到他们牛仔裤口袋里的盒子就是他们行走江湖不湿身的秘籍。这个名为 Analog Discovery2 的绿色小盒,能集前文提到的所有常用仪器功能于一身,只要你身边有台笔记本电脑,就能在任意场合随时随地拥有一个强大的电子工程设计工作站!正是靠它,让多少学霸们无论是在实验室内还是在实验室外,都能在几乎所有环境中去随心所欲地搭建并测试他们的模拟和数字电路。

作者:闲情逸致

背景:
随着仪器设计技术地快速发展,不论是现在还是未来,当用户使用的器件或实验发生变化时,都需要用户可以自定义自己的示波器操作以便满足独特的用户需求。而PXIe-517x示波器家族,实现了首次将LabVIEW可编程FPGA模块内嵌到示波器中,同时,内嵌到此系列示波器中的FPGA模块,可以通过LabVIEW FPGA开发工具进行重新编程和定向话设计,本系列示波器主要包括PXIe5170R,PXIe-5171R两种型号。通过嵌入用户可编程的FPGA到示波器内部,PXIe-517x系列示波器不仅可以为用户提供超高的通道密度、精确度以及测量灵活性外,还可以降低用户的测试成本,缩短用户设计的上市时间,同时,通过PXIe-517x可配置示波器还可以提高用户的测试域。除此之外,PXIe-517x系列示波器还包含一个14bit的ADC模数转换通道,4/8个250MS/s的仿真取样输入通道和高达100/250MHz的模拟带宽,以及前面不断提到的一个用户可编程的Xilinx Kintex-7 FPGA芯片(可使串流速率上升到3.2GB/s)。

PXIe-5172:

概述
2016年11月,SIGLENT发布了新一代入门级示波器SDS1000X-E,它的最高带宽为200 MHz,采样率 1 GSa/s,标配存储深度14 M点;值得一提的是,SIGLENT将之前只在其中高端系列示波器上采用的SPO超级荧光数字示波器技术,集成到了这款入门级产品中,使其具备了灵敏度高、触发抖动小的数字触发系统,高达40万帧/秒的波形捕获率和256级辉度等级显示;同时SDS1000X-E还支持丰富的数据采集和处理功能,包括智能触发、串行总线触发和解码、历史模式(History)和顺序模式 (Sequence)、丰富的测量和数学运算、高达1M点的FFT等等,重新定义了入门级示波器。

能够将一些中、高端数字示波器才具有的指标和功能体现到入门级示波器中,得益于SIGLENT在SDS1000X-E中使用了Xilinx的Zynq-7000 SoC作为核心处理芯片。

Kintex引领显示:基于Kintex的高性能示波器

作者:闲情逸致

示波器介绍:
示波器是一种显示电压信号动态波形的电子测量仪器,它能够将时变的电压信号,转换为时间域上甚至频域上的曲线。随着电气化革命的推进乃至到现如今的物联网时代,示波器的已经发展成诸多类别,模拟示波器、数字存储示波器DSO、数字荧光示波器DPO等等,并广泛应用于通用电子电路测试与调试、计算机及通信高速信号测试、航空航天、雷达测量等领域。

目前已有多家公司在追求示波器的更高性能与更通用越做越好,如泰克(Tektronix)、安捷伦(Agilent)、日立(Hitachi),菊水(Kikusui) 、固纬(Gwinstek)、国家仪器(National Instruments)等。现在,许多公司正在将传统台式示波器转化成模块化示波器,使用者从而可以优化系统成本、密度、测量分辨率或采样率等各项性能。

基于Kintex的PXIe-5164开发平台:

测量从触发开始

由于当今在消费电子、汽车以及航天应用中所使用的产品随着不断的更新而变得越来越复杂,同时,不断完善的测试能力以及不断缩短的测试时间和上市时间给测试仪器提出了更多的要求。

对于像示波器这样的仪器,一个主要的需求是快速且可靠地对已知信号流中的感兴趣事件进行检测和触发。对特定事件的检测越及时,电子设计过程中产生的问题就能够越快地被纠正,从而节省开发和生产测试时间。

这一点对于示波器供应商来说同样重要。许多供应商提供100多个预定义的触发来帮助用户将常见和不常见的信号条件快速分开。这一方面提高了灵活性,但是另一方面,选择正确的触发本身要比实际捕获信号更加困难,因为触发具有多种多样的类型、速度、带宽、延时和软件等,而且每一个触发都需要在灵活性与死区时间之间进行权衡。 理解每种类型的触发以及相应的权衡可以帮助用户找出理想的触发方法来提高成功触发事件的几率。

两方面因素决定了示波器的触发性能:

触发灵活性描述了定义触发阈值或条件来适应各种被测信号条件状态以提高效率的简单程度。 大多数示波器提供了供应商定义的各种触发功能,包括参数最低值设定,比如电平或宽度等,但是没有提供一种方法来自定义这些参数。

教程——Basys3开发板实现示波器设计

一、目的
1)掌握基于v文件的vivado工程设计流程
2)学习示波器的基本组成结构

二、原理介绍
数字存储示波器能够将模拟信号进行采样、存储以及显示。本系统在Basys3上构建了一个简易数字存储示波器,简化框图如下:

原理:首先,AD模块对模拟信号进行采样,触发电路根据采样信号判断触发条件(例如:上升沿触发)。满足触发条件后,连续采样一定数量的点(本系统中为640个点),存储到RAM中。峰峰值、频率计算模块对RAM中储存的波形数据进行计算,得到波形的频率以及峰峰值;VGA模块将波形显示出来,并显示计算得到的峰峰值和频率数值。
本实验通过调用Basys3板上芯片中的ADC模块,对外部电压信号进行采样、存储,并通过VGA显示器将波形显示出来。
在Basys3上电之前,需要提前将Basys3与VGA连接好,并准备好一台信号发生器。

三、步骤:
1、创建新工程
1) 打开Vivado2014.4设计开发软件,选择CreateNew Project.

示波器的需求急速成长,同时新的研究和测试应用也需要更多、更快、更复杂的讯号。 这会需要更具智能功能的测试设备,才能准确侦测特定的讯号状况并避免空滞时间、在采集期间处理资料以缩短测试时间,或者是快速产生反馈讯号以控制待测装置 (DUT)。 过去十年来,强大 PC 软件和模块化 I/O 的紧密整合,不仅缩短了测试时间,同时也降低了整体测试成本。 软件设计仪器属于全新的产品类别,能够把用户算法扩充至仪器本身,藉此把这个概念提升到新的境界。 这样一来即可设计高度优化的测量系统,进一步实时分析每个样本,避免耗时的后续处理作业。 最后不但能够缩短测试时间,还可以更快地探索科学与研究应用。

开放式FPGA增加测试灵活性

现在的大多数仪器通过将封闭式FPGA与固定固件相结合来实现仪器的各种功能。如果您看过一个拆解后的示波器,您可能已经看过里面的FPGA。 FPGA提高了测试仪器的处理能力,而且如果您会使用仪器中的开放式FPGA,就可以自己编写仪器的测试功能。

仪器厂商早就认识到FPGA的优势,而且也利用其独特的处理能力来实现仪器的各种特性:

* 在示波器上进行预触发采集

* 在矢量信号分析仪上通过信号处理生成I和Q数据

* 实时实现模式生成和高速数字仪器的向量比较

基于FPGA和TFT彩屏液晶的便携示波器设计

在现代通信、雷达和航空航天等应用领域,由于设备复杂度和集成度的不断增加,在进行外场维护和测试时,通常需要借助于示波器等一些辅助的电子测量仪器来观察信号的波形并进行相关参数的测量。目前,现代化的数字存储示波器以其独特的优势逐步取代了模拟示波器,对信号的测量带来了很大的便利。然而,外场测试及维护工作的实际需要对示波器这样的测量仪器也提出了更多的要求,除了成本的限制以外,在体积、精度、实时性以及使用的灵活性等方面也有了更高的标准。常用的示波器一般体积比较大,成本高,这就使它的应用受到了一些限制。在这种情况下,开发低成本便携的手持示波器,将会大大提高其应用空间,为设备的外场维护和测试工作提供更多的便利。

同步内容