人工智能

在2018年及其以后,深层神经网络和机器学习在更大的人工智能(AI)领域会如何发展?我们如何能开发出越来越复杂的机器以在日常生活中帮助人类?这些都是普渡大学机器学习硬件教授尤金尼奥·库鲁尔塞罗(Eugenio Culurciello)关注的问题。请注意,本文的重点并非有关AI的预测,而是对该领域发展轨迹、趋势以及技术需求的详细分析,以帮助创造更有用的AI。当然,并非所有的机器学习都是针对AI的,还有些其他容易实现的目标,下面我们就仔细审视下。

目标
AI领域的目标是通过机器上实现人类和超人的能力,以便让它们在日常生活中帮助我们。自动驾驶车辆、智能家居、智能助理以及安全摄像头将是植入AI技术的首批目标,家庭烹饪和清洁机器人、无人侦察机和机器人则是第二批目标。其他目标还有移动设备上的助理,全职陪伴助理(可以听到和看到我们的生活经历)。而AI领域的终极目标是打造完全自主的合成实体,它可以在日常工作中以相当于人类或超越人类的水平行事。

软件

在AI算法尚不成熟的时候,可编程的灵活性给予了FPGA一定的市场优势。

但是,随着目前AI算法进一步成熟,各类全定制化的AI芯片开始陆续出现,比如搭载了寒武纪NPU的麒麟970手机芯片,又比如赛灵思投资的深鉴科技明年就要推出的AI芯片“听涛”等。定制化芯片能够提供更低的功耗与更高的能效比,其批量生产的成本也低于FPGA,那么在这样的背景下,FPGA的灵活性又是否能保持优势呢?

1.计算机视觉及机器学习算法加速,带来最快的系统响应

2.提供快速升级至传感器最佳可用类型及组合所需的可重配置性,这是其它产品没有的特性

3.可任意连接至最新机器和/或云

在赛灵思看来,人工智能和机器学习应用正在迅速扩大到越来越多的边缘市场,从云到端,从人脸识别摄像头,无人驾驶汽车,机器人、语音识别等各种新兴应用, 赛灵思全可编程的FPGA或Zynq SoC系列都能够为客户部署先进的高效神经网络、算法及应用带来更高的性能和低延迟优势。

赛灵思眼中的人工智能

赛灵思成立于1984年,总部位于美国硅谷,是FPGA的发明者,无晶圆厂(Fabless)半导体模式的开创者。

人工智能、机器学习和认知计算入门指南

几千年来,人们就已经有了思考如何构建智能机器的想法。从那时开始,人工智能 (AI) 经历了起起落落,这证明了它的成功以及还未实现的潜能。如今,随时都能听到应用机器学习算法来解决新问题的新闻。从癌症检测和预测到图像理解和总结以及自然语言处理,AI 正在增强人们的能力和改变我们的世界。

现代 AI 的历史包含一部伟大的戏剧应具有的所有要素。上世纪 50 年代,随着对思维机器及阿兰·图灵和约翰·冯·诺依曼等著名人物的关注,AI 开始崭露头角。尽管随后经历了数十年的繁荣与萧条,并被寄予了难以实现的厚望,但 AI 和它的先驱们仍然一直在努力前行。如今,AI 展现出了它的真正潜力,专注于应用并提供深度学习和认知计算等技术。

本文将探索 AI 的一些重要方面和它的子领域。我们首先会分析 AI 的时间线,然后深入介绍每种要素。

现代 AI 的时间线

福布斯关于2018 AI芯片的十个预测

2017年是人工元年,人工智能技术开始走入我们的生活,对于AI粉丝和AI采用者来说,2017是令人振奋的一年。当我们进入2018年的时候,有一点是肯定的:我们刚刚开始这个旅程,今后一年AI会有很大的成功和巨大的失败,2018年全球AI芯片领域会有哪些变化?福布斯深度学习和高性能计算领域分析师Karl Freund做了如下预测。

首先看看2017年AI领域的十大事件:

1、NVIDIA在数据中心实现三位数增长,达到约15亿美元的收入运行率。

2、NVIDIA®(英伟达™)使用NVIDIA®(英伟达™)V100 GPU和用于机器学习的云服务令市场大吃一惊,TensorCores-6X能够以每秒125万亿次的运算速度超越一年前的PASCAL前身。

3、NVIDIA也宣布推出自己的Deep Learning ASIC,将其纳入该公司下一代DrivePX汽车平台。如承诺的那样,公司在第三季度发布了规格为开源技术。

4、AMD推出了其AI GPU和软件Vega Frontier Edition。该公司宣布了几项大规模部署,包括百度的GPU和微软的的Azure EPYC CPU。

介绍一款基于FPGA的CNN硬件加速器IP

作者:Sleibso,编译:Stark

随着人工智能(AI)的不断发展,它已经从早期的人工特征工程进化到现在可以从海量数据中学习,机器视觉、语音识别以及自然语言处理等领域都取得了重大突破。CNN(Convolutional Neural Network,卷积神经网络)在人工智能领域受到越来越多的青睐,它是深度学习技术中极具代表性的网络结构之一,尤其在图像处理领域取得了很大的成功。随着网络变得越来越大、越来越复杂,我们需要大量的计算资源来对其进行训练,因此人们纷纷将注意力转向FPGA(Field Programmable Gate Array,现场可编程门阵列)器件,FPGA不仅具有软件的可编程性和灵活性,同时又有ASIC高吞吐和低延迟的特性,而且由于具有丰富的I/O接口,FPGA还非常适合用作协议和接口转换的芯片。

机器学习和深度学习概念入门(上)

1、人工智能、机器学习、深度学习三者关系

对于很多初入学习人工智能的学习者来说,对人工智能、机器学习、深度学习的概念和区别还不是很了解,有可能你每天都能听到这个概念,也经常提这个概念,但是你真的懂它们之间的关系吗?那么接下来就给大家从概念和特点上进行阐述。先看下三者的关系。

人工智能包括了机器学习,机器学习包括了深度学习,他们是子类和父类的关系。

下面这张图则更加细分。

2、什么是人工智能

AI指数报告:让我们从18个分立的视角来看AI

最近,斯坦福“人工智能百年(AI100)”专家小组(非盈利性项目AI Index)发起了一项AI指数报告,追踪学术界、产业界、开源软件和公共兴趣范畴的18个分立的视角评估人工智能活跃度,盘点计算机视觉、自然语言理解等技术发展现状(机器类人程度),从专家视角解读人工智能创业和投资的急剧增加,探讨相关领域的深入发展。

人工智能活跃度一览


AI活跃度指数(来自学术界和工业界数据,如出版物、注册创企和风险投资等)

从学术领域来看

人工智能论文大部分隶属计算机科学的范畴,自1996年至今年度发表的论文数量已经增加9倍,作为参考,计算机科学论文数量此间增加了6倍;

高校机器学习等人工智能相关课程的开设数量和学生的参与度都大幅增加;

人工智能相关的顶级会议也变的火爆,包括如 AAAI、IJCAI、ICML等综合性会议,以及CVPR、ACL、ICRA等专注于通用技术(计算机视觉、自然语言、机器人等)的会议。

给AI换个“大动力小心脏”之OCR异构加速

作者: derick,腾讯架构师

OCR在通用文字识别等场景下有广泛应用,基于FPGA异构加速的OCR识别相比CPU/GPU实现具有延时小、成本低的优势。我们设计了多FPGA芯片协同的异构加速架构,能快速适配业务OCR模型变化,检测识别整体性能为GPU P4 130%,处理延时仅为P4的1/10,CPU的1/30。

1.文字识别技术- OCR

OCR技术,通俗来讲就是从图像中检测并识别字符的一种方法,在证通用文字识别、书籍电子化、自动信息采集、证照类识别等应用场景中得到了广泛应用。通用场景的OCR因此通用场景下的OCR技术一直都是人工智能领域挑战性极强的研究领域,不需要针对特殊场景进行定制,可以识别任意场景图片中的文字。

通用OCR技术包含两大关键技术:文本检测和文字识别。检测模型的作用简单来说就是确定图片中哪里有字,并把有字的区域框出来。文字识别是将文本检测box作为输入,识别出其中的字符。

作者:Lina,智东西记者

随着移动互联网红利日渐式微,一个更具备颠覆性、更具备革命性的王朝正悄然来临——人工智能(AI)。在下一个十年里,云计算、机器学习、AI芯片等相关产业将以迅猛的势头持续占领市场份额,为人工智能无孔不入地渗透进各行各业打下坚实基础。

而正如英特尔赢在PC时代、高通赢在智能手机时代,在AI时代大幕拉开的当下,人工智能芯片产业结构也在激剧地变换当中。其中不仅涌现出英伟达这类来势凶猛、股价接连翻倍的独角兽企业,更是催生了大大小小各类公司焕发勃勃生机——他们或是备受资本亲睐的新兴芯片/板卡创业独角兽,或是老牌芯片厂商的战略重心转移。

而在这个热闹的大舞台上,自然少不了老牌FPGA芯片巨头赛灵思(Xilinx)的身影——自2011年开始,赛灵思就提出全可编程(All Programmale)的理念,将灵活(可编程)、低延迟、低功耗的FPGA技术从传统的通讯、国防领域拓展到了人工智能、云计算、嵌入式视觉、工业物联网、5G等领域的应用上。

2017年中国计算机视觉行业研究报告

2017年下半年,数家计算机视觉公司单笔融资上亿美元,再次将计算机视觉推向人工智能领域最受关注的方向之一。本报告聚焦于计算机视觉技术现阶段在工业界的应用与研发,将在对相关技术热点及产业整体做概述性介绍的基础上,对典型应用的具体使用场景分领域论述,希望理清现状,写明征途,供产业界、投资界、政策制定者及关注人工智能领域的社会各界以参考。因报告研究对象以技术层创业公司为主,偏颇遗漏之处,敬请指正。

报告核心观点:
1. 深度学习主要提升的是计算机视觉领域分类任务的准确率;开源环境仅降低计算机视觉领域的入门技术门槛,前沿算法的技术壁垒依然存在;计算机视觉比赛成绩、论文成果不直接代表技术团队解决实际业务问题的能力。
2. 2017年中国计算机视觉规模预期为40亿,凭借安防领域的爆发性增长,预期2020年将增长至725亿。
3. 前端嵌入式智能系统的渗透率将逐步提升,与后端协同智能计算,加速产业智能升级。
4. 算法迭代将不断提升限定场景识别准确率,加速渗透为各行业应用赋能。
5. 前沿算法之外,计算机视觉公司的商业壁垒有赖于产品、服务、市场等综合建设。

同步内容