频谱分析仪

作者:David Brandon 和 Rob Reeder

摘要
在大多数实验室环境中,信号发生器、频谱分析仪等设备是单端仪器,用于测量高速差分放大器驱动器和转换器的失真。因此,测量放大器驱动器的偶数阶失真(例如二次谐波失真HD2,甚至阶偶数阶交调失真或IMD2)需要额外的器件,如巴伦和衰减器等,作为整体测试设置的一部分,以将单端测试仪器连接到放大器驱动器的差分输入和输出。本文通过不匹配信号的数学知识揭示了相位不平衡的重要性,并说明了相位不平衡如何导致偶数阶产物的增加(即变得更糟糕!)。本文还将展示了几种不同高性能巴伦和衰减器的权衡如何影响被测放大器的性能指标(即HD2和IMD2)。

数学背景 = 耶!
测试具有差分输入的高速器件(如模数转换器、放大器、混频器、巴伦等)时,幅度和相位不平衡是需要理解的重要特性。

当模拟信号链设计使用500 MHz及以上的频率时,必须非常小心,因为所有器件(无论有源还是无源)在频率范围内都有某种固有不平衡。500 MHz并不是一个奇妙的频率点,只是基于经验,这是大多数器件开始偏离相位平衡的地方。根据器件不同,此频率可能比这低得多或高得多。

我们来仔细看看下面的简单数学模型:

作者:Sleibso,编译:蒙面侠客

背景:
无论是在实验室调试嵌入式设备,还是在外场解决复杂的问题,都需要一款便携式的频谱分析仪,在要求有高性能和较宽的测试范围的同时,我们还希望这个仪器有着较小的功耗,这样就不怕外场测试突然没有电的尴尬情况了。解决这样要求的办法是要有一款强大功能的芯片,既能够启动仪器的操作系统,还能够进行逻辑分析,还要保证高性能情况下的低功耗。

频谱分析仪中的 Spartan-6 FPGA

作者:蒙面侠客

频谱分析仪是一种测试测量设备,主要用于射频和微波信号的频域分析,包括测量信号的功率,频率,失真等。它的性能主要是从实时带宽,动态范围,灵敏度和功率测量准确度等四个方面来评价。那么这么高的性能需要什么样的电路才能完成呢?我们已经迫不及待的想要拆开一台频谱分析仪来一探究竟啦!

PCI-SIG将PCIe的锁相回路(PLL)列为基本测试项目,目前有几种可用于执行该测试的手法。本文中将以PCIe 2.0的规格要求为例,概述几种较为常见的方法,并针对其优势与劣势进行简单比较。

为了在系统中控制抖动抑制效能,PCIe 2.0规定了板载PLL的操作回路回应特性,特别是最小和最大的PLL回路带宽和峰值。表1列出了规格中所述的这些PLL回应特性。

表1列出了规格中所述的这些PLL回应特性

目前有几种量测PLL回路响应的方法,取决于所使用的测试仪器类型。正如预期,这些方法都会在测试准确度、测试速度(吞吐量)、易用性、易设定性及初始成本等方面有所取舍。此外,有些方法还具有不同的限制,造成其无法普遍用于所有的PLL类型。

当测试测量改变时如何稳定时钟速度

人们普遍存在的一个误解是测试数据不是合格就是无效,但事实并非如此。 尽管功能固定的传统仪器仅将结果发送回测试系统的主机PC,但是仪器内部其实进行了大量看不见的信号处理。 仪器的处理器决定了测量速度。 这一点尤其适用于需要信号处理密集型测量的应用,如射频、声音和振动以及基于波形的示波器。

图1. 信号处理占据了高CPU消耗测量的主要时间。

图1. 信号处理占据了高CPU消耗测量的主要时间。

同步内容