TensorFlow

Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构( https://github.com/tensorflow/models ),大大降低了开发难度,利用现成的网络结构,无论fine-tuning还是重新训练方便了不少。最近笔者终于跑通TensorFlow Object Detection API的ssd_mobilenet_v1模型,这里记录下如何完整跑通数据准备到模型使用的整个过程,相信对自己和一些同学能有所帮助。

Object Detection API提供了5种网络结构的预训练的权重,全部是用COCO数据集进行训练,这五种模型分别是SSD+mobilenet、SSD+inception_v2、R-FCN+resnet101、faster RCNN+resnet101、faster RCNN+inception+resnet101。各个模型的精度和计算所需时间如下。下面及介绍下如何使用Object Detection去训练自己的模型。

【干货】TensorFlow的55个经典案例

本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow。这些案例适合那些想要实现一些 TensorFlow 案例的初学者。本教程包含还包含笔记和带有注解的代码。

第一步:给TF新手的教程指南

1:tf初学者需要明白的入门准备

机器学习入门笔记:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/noteboo...
MNIST 数据集入门笔记
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/noteboo...

2:tf初学者需要了解的入门基础

Hello World
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/noteboo...

一步一步学用Tensorflow构建卷积神经网络

摘要: 本文主要和大家分享如何使用Tensorflow从头开始构建和训练卷积神经网络。这样就可以将这个知识作为一个构建块来创造有趣的深度学习应用程序了。

0. 简介

摘要: 初学者在学习神经网络的时候往往会有不知道从何处入手的困难,甚至可能不知道选择什么工具入手才合适。近日,来自意大利的四位研究者发布了一篇题为《神经网络初学者:在 MATLAB、Torch 和 TensorFlow 中的快速实现(Neural Networks for Beginners A fast implementation in Matlab, Torch, TensorFlow)》的论文,对 MATLAB、Torch 和 TensorFlow 这三种神经网络工具进行了介绍和比较。

本报告提供了最常见的开发环境内一些机器学习工具的介绍。本报告主要关注实际问题,跳过了任何理论介绍。本报告面向的读者是想要进入机器学习领域的学生和正在寻找新框架的专家。

这篇论文是关于人工神经网络(ANN,[1,2])的,因为这是目前最热门的主题,并且在许多人工智能任务上都达到了当前最佳的水平。在单独介绍了每一种框架之后,我们同时也给出实现一些一般常见问题的设置方法,从而使它们的比较更简单。

因为这个主题已经得到了广泛的研究,而且还在持续快速地增长,所以我们将这个文档和一个 GitHub 库进行了配对,这个库中的文档是动态更新的,而且以后可能还会扩大规模。

如何选择深度学习优化器

作者:不会停的蜗牛 CSDN AI专栏作家

在很多机器学习和深度学习的应用中,我们发现用的最多的优化器是 Adam,为什么呢?

下面是 TensorFlow 中的优化器, https://www.tensorflow.org/api_guides/python/train

在 keras 中也有 SGD,RMSprop,Adagrad,Adadelta,Adam 等:
https://keras.io/optimizers/

我们可以发现除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢?

在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:
https://arxiv.org/pdf/1609.04747.pdf

本文将梳理:
每个算法的梯度更新规则和缺点
为了应对这个不足而提出的下一个算法
超参数的一般设定值

开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力。那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考。你最看好哪个深度学习框架呢?

现在的许多机器学习框架都可以在图像识别、手写识别、视频识别、语音识别、目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题。所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题。

下图总结了在 GitHub 中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在 GitHub 里的收藏数,这个数据由 Mitch De Felice 在 2017 年 5 月初完成。

TensorFlow

地址: https://www.tensorflow.org/

Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步。自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜。在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准。本文节选自《TensorFlow实战》第二章。

主流深度学习框架对比
深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon,等等。然而TensorFlow却杀出重围,在关注度和用户数上都占据绝对优势,大有一统江湖之势。表2-1所示为各个开源框架在GitHub上的数据统计(数据统计于2017年1月3日),可以看到TensorFlow在star数量、fork数量、contributor数量这三个数据上都完胜其他对手。

编者网按:本文是Google Brain负责人Jeff Dean在硅谷人工智能前沿论坛AI Frontiers的演讲。

在深度学习的历史上,神经网络的方法在1980-1990年之后开始明显地发挥效力,在数据量、计算力的推动下,用深度学习神经网络的方法使得我们在研究和开发上获得了比其它方法更高的准确率(在图像、语音等领域)。在2011年之前,深度学习的方法能达到的图像误识率都是26%,而在今天这个数字超过了人类的误识率(5%),达到了3%。在Google今天的产品线中深度学习的方法使用非常广泛,包括Android平台、各类App中、药物研究、Gmail等等。

Google Brain团队目前有什么样的成果:
在研究方面,有27个paper在各种顶级会议中发表;

推动Google搜索、广告、相册、翻译、Gmail等产品线的整合优化;

发布TensorFlow等在社区中高度流行的开源工具。

谈到TensorFlow的开发,我们最初的出发点是需要创建一个合适的深度学习工具。

这个工具需要满足下面的几个条件:
1. 适合于机器学习思考和算法的表达;
2. 运行效率高,能够快速地试验想法;
3. 兼容性好,实验能在不同平台上运行;
4. 可在不同环境下分享和重现研究的问题;
5. 适合产品化:能很快从研究阶段过渡到产品应用阶段;

同步内容