BrainChip

BrainChip Holdings刚刚发布了一款PCIe服务器加速卡BrainChip Accelerator,该卡可以使用脉冲神经网络而不是卷积神经网络(CNN)同时处理多种视频格式的16路视频。 BrainChip加速卡采用 Xilinx Kintex UltraScale FPGA实现了6核处理单元的BrainChip的Spiking神经网络(SNN)处理器。

这是BrainChip加速卡的照片:

作者:清风流云

背景:
脉冲神经网络Spiking neuralnetworks (SNNs)是第三代神经网络模型,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑其中。基本思路为:动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活。当一个神经元被激活,它会产生一个信号传递给其他神经元,提高或降低其膜电位。在脉冲神经网络中,神经元的当前激活水平(被建模成某种微分方程)通常被认为是当前状态,一个输入脉冲会使当前这个值升高,持续一段时间,然后逐渐衰退。出现了很多编码方式把这些输出脉冲序列解释为一个实际的数字,这些编码方式会同时考虑到脉冲频率和脉冲间隔时间。

BrainChip加速卡:

同步内容