AIScale

介绍一款基于FPGA的CNN硬件加速器IP

作者:Sleibso,编译:Stark

随着人工智能(AI)的不断发展,它已经从早期的人工特征工程进化到现在可以从海量数据中学习,机器视觉、语音识别以及自然语言处理等领域都取得了重大突破。CNN(Convolutional Neural Network,卷积神经网络)在人工智能领域受到越来越多的青睐,它是深度学习技术中极具代表性的网络结构之一,尤其在图像处理领域取得了很大的成功。随着网络变得越来越大、越来越复杂,我们需要大量的计算资源来对其进行训练,因此人们纷纷将注意力转向FPGA(Field Programmable Gate Array,现场可编程门阵列)器件,FPGA不仅具有软件的可编程性和灵活性,同时又有ASIC高吞吐和低延迟的特性,而且由于具有丰富的I/O接口,FPGA还非常适合用作协议和接口转换的芯片。

同步内容